SIMULATION AND ANALYSIS OF FLIGHT DECK OPERATIONS ON AN LHA(U) CENTER FOR NAVAL ANALYSES ALEXANDRIA VA MARINE CORPS OPERATIONS ANALYSIS GROUP S H GATES JUN 87 CNA-PP-456 N00014-87-C-0001 AD-A182 192 1/2 UNCLASSIFIED NL

Professional Paper 456 / June 1987

OTIC FILE COPY

Simulation And Analysis Of Flight Deck Operations On An LHA

bу

Stephen M. Gates

CENTER-FOR-NAVAL-ANALYSES

4401 Ford Avenue • Post Office Box 16268 • Alexandria, Virginia 22302-0268 7703) 824-2000

This document like been approved for public release and asies its distribution is unitabled.

Cleared for Public Release. Distribution Unlimited.

The ideas expressed in this paper are those of the author. The paper does not necessarily represent the views of the Center for Naval Analyses, the Department of the Navy or the Department of Defense.

Simulation And Analysis Of Flight Deck Operations On An LHA

bу

Stephen M. Gates

Marine Corps Operations Analysis Group

NOCC14-87-0-0001

A Ditteren of

CNA

Hudson Institute

CENTER-FOR-NAVAL-ANALYSES

4401 Ford Avenue • Post Office Box 16268 • Alexandria, Virginia 22302-0268 • (703) 824-2000

TABLE OF CONTENTS

<u>Pag</u>	e
List of Illustrations ii	i
List of Tables ii	i
Introduction	1
Approach	
System Description	4
Event AC.Refueled Given AC 1 Event AC.Respotted Given AC 2 Event Bone.Arrival Given AC 2 Event Deck.Arrival Given AC 2 Event Deck.Decision Given Flight 3 Event Delta.Arrival Given AC 3 Event Delta.Arrival Given AC 4 Event Elevator.Arrival Given AC 4	.0 .1 .3 .5 .9 !1 !5 8 !1 6 .0
	6 8 1 3 7 9
Analysis of the AV-8/Helo Mix Problem 6	. 4

LIST OF ILLUSTRATIONS

	<u>Page</u>
1	LHA Flight Deck 5
2	AV-8 Flow Through System 8
3	Helicopter Flow Through System 9
4	Buildup Rate During a Six-Hour Assault (CH-46) 72
5	Buildup Rate During a Six-Hour Assault (AV-8)
6	Buildup Rate During a Six-Hour Assault (CH-53) 74
	LIST OF TABLES
	Page
1	Comparison of the Planned and Actual Launch Times 61
2	Histogram Data 62
3	Measures of Effectiveness
4	
	Model Inputs for Aircraft Types
5	Model Inputs for Aircraft Types
5 6	
	Distribution and Random Number Stream Assignments 66

9 Paired-Difference Analysis for the 8 and 10 AV-8 Cases 71

Chapter 1

INTRODUCTION

1.1 PURPOSE

The objective of this thesis was to develop a model that simulates the interactions between a number of close air support aircraft and helicopters on a flight deck during an amphibious assault. Application of this model permits a quantitative investigation into the operations of various mixes of current aircraft on a specific flight deck, and with minor modification, the effects of future aircraft and future flight decks can be examined.

The model is currently configured for operations aboard an LHA flight deck with two types of transport helicopters and the AV-8 Harrier attack aircraft. The model application presented here considers the maximum number of AV-8 Harriers that could operate effectively with a composite helicopter squadron during the amphibious assault of a Marine Amphibious Unit.

1.2 BACKGROUND

The principal mission for the United States Marine Corps is the amphibious assault. An amphibious assault is characterized by the ship-to-shore movement of troops and equipment by surface craft and aircraft to establish a beachhead and attain an operational objective. The success or failure of the assault may be determined by the initial rate of force buildup, when the landing force must rapidly be concentrated to overwelm opposition to the landing.

Marine amphibious task forces come in a variety of sizes, ranging from a Marine Amphibious Unit (MAU) of approximately 2500 personnel to a

Marine Amphibious Force (MAF) of nearly 50,000 personnel. During peacetime, Amphibious task forces are normally deployed as MAUs embarked on 3-7 Naval amphibious ships. Usually, one of these ships will be a general purpose amphibious assault ship of the Tarawa LHA-class.

An LHA has a flight deck configured for helicopter operations, a floodable well deck for landing craft operations, a hangar deck for storing and maintaining aircraft, a 300-bed hospital, living spaces for a crew of 900 and 1900 Marines, and cargo spaces for the weapons, equipment, and supplies to support these Marines for several weeks. In addition to the composite helicopter squadron that the LHA usually operates with, a detachment of AV-8 Harriers may also be carried. AV-8s have a vertical/short takeoff and landing (V/STOL) capability, and are embarked to assist in the beach preparation prior to the assault and to provide close air support during the assault.

The AV-8s are a valuable asset to the MAU, but LHAs were not designed to support fixed wing aircraft, and helicopter operations must be temporarily suspended when AV-8s launch or recover. The competition between AV-8s and helicopters for limited flight deck assets necessarily slows the offload of troops and equipment, the delay increasing with the number of AV-8s. As mentioned earlier, speed is of the essence in the buildup ashore, but the capability afforded by the AV-8 presence can offset some reduction in the buildup rate.

In July 1982, a test was conducted in the Indian Ocean with a composite squadron of helicopters and 6 AV-8s. Among the conclusions was the finding that a composite helicopter squadron and 6 AV-8s are capable of integrated flight deck operations. Further tests have been postponed pending the introduction of a new version of the AV-8.

1.3 APPROACH

The goal of this model is to simulate the flight deck operations during an actual assault rather than an assault exercise. This approach was chosen because interest would obviously be the greatest in results obtained in a more realistic setting. For simulation purposes, the transition from an exercise to an actual assault requires the removal of the effect of training being conducted concurrently, and relaxation of the many safety requirements of peacetime operations. Exercise data must therfore be massaged with the guidance of experts from this operational area.

<u>alloword to a contract of the contract of the</u>

Two aspects of reality have not been included in the model: they are combat attrition and aircraft reliability. The intended effect of their absence is to stress the aircraft interactions throughout the simulated assault by not allowing the finite source population to decrease.

The model is a stochastic, discrete event system. The events of interest include all types of service or activity where helicopters and AV-8s might interact, both on and off the flight deck, during an assault landing.

The model verification and validation were both accomplished by stepping event by event through simulation output for many cases. A sample of this output appears in appendix B. Both efforts concluded that the model performs basically as desired.

Chapter 2

SYSTEM DESCRIPTION

The system consists of a number of aircraft (CH-46s, CH-53s, and AV-8s) that move between three major locations with a variable amount of activity and movement occurring at one of these locations.

The first major location is the Landing Zone (LZ). The LZ is the destination of the heliborne force during the assault landing. The helicopters arrive at the LZ in waves, and depart as soon as their load of troops and/or cargo has been unloaded. Their destination from the LZ is the delta pattern.

The delta pattern is a holding pattern established in the vicinity of the ship. Normally the delta pattern is a racetrack pattern around the ship, oriented on the ship's heading. Aircraft arrive to the delta pattern individually and join any other aircraft waiting there until the ship is able to recover them. The order of recovery depends on many factors, including fuel status, flying time remaining, time of next launch, and aircraft type.

The last major location is the ship; this is where the majority of the aircraft interactions occur. Relevant features of the ship include locations where aircraft may be positioned, and service activities that are not necessarily location dependent. Figure 1 displays the features of the flight deck on an LHA. The sytem description continues with the ship designated as of the LHA class. Locations aboard the ship are described as follows:

1. Deck Spots - There are six deck spots normally used for the launch and recovery of aircraft. These spots are located on the port side of the ship running from bow to stern. In figure 1, these spots are numbered 2,4,5,6,7,8. Spot 1 is not capable of recovering any of the aircraft listed above because of the limited amount of deck forward of the spot. Spots 3 and 9 could be

FIGURE 1. LHA FLIGHT DECK

MANAGEMENT COMMENSATION COMMENSATION CONTRACTOR OF STREET AND STRE

used for launch and recovery, but they have other uses, and are called the forward and aft bones, respectively.

- 2. Forward Bone The forward bone is the area forward of the island on the ship's starboard side. It is normally used as a parking area for aircraft waiting to respot to a deck spot for launching, and minor maintenance and refueling can be performed there. In the 1982 test, the forward bone was designated for use by the CH-46s.
- 3. Aft bone The aft bone is the area aft of the island on the ship's starboard side. It has the same uses as the forward bone, and in the 1982 test, it was designated for use by CH-53s and AV-8s.
- 4. Elevator There are two elevators on an LHA: one between spots 7 and 8 on the port side and the other centerline on the stern. The elevators connect the flight deck with the hangar deck and are capable of moving only one of the listed aircraft at a time. Normally, only one of the two elevators will be in use during an operation.
- 5. Hangar The hangar is located directly below the flight deck. It is used to store aircraft and perform all levels of maintenance.

The service activities that the aircraft on the ship are affected by include:

- 1. Refueling There are six refueling stations on the flight deck, each with two hoses. The stations are distributed on the deck so that an aircraft located anywhere on the deck is within the reach of at least one station's hoses. The stations are manned by four refueling crews that move between stations as necessary. The maximum number of aircraft that can refuel simultaneously is, therefore, four.
- 2. Loading Helicopters are loaded on any of the six deck spots immediately prior to launching. Each spot has a combat cargo representative to oversee the loading process, so all six spots may load simultaneously. AV-8s are loaded with ordnance in the aft bone. Two ordnance teams are normally embarked, so only two AV-8s may be loaded at the same time. Ordnance can be assembled in advance and staged to the loading area, so it is assumed that ordnance is always available when requested.
- 3. Respotting Respotting occurs for all aircraft to and from the deck spots, the bones, the elevator, and the hangar. Helicopters always require the assistance of a tug (tractor) when respotting. AV-8s may respot to the takeoff line from the bone, and from their recovery spot to the bone under their own power. In all other cases, AV-8s also require a tug for respotting. There are four tugs located on the flight deck and one located on the hangar

deck.

- 4. Launching Helicopters launch from the six deck spots previously mentioned. AV-8s launch with with a deck run along the short takeoff line. The length of the deck run depends on the aircraft weight, the wind speed, and the temperature, but at the very least, spots 1,2, and 4 must be cleared of aircraft prior to an AV-8 launch. Aircraft launch one at a time with a small interval between launches of aircraft in a wave.
- 5. Recovery All aircraft use the six deck spots previously mentioned for recovery. Generally, the smaller aircraft (CH-46s) are recovered on the forward spots and the larger aircraft (CH-53s) are recovered on the aft spots. During an emergency, all aircraft may be recovered on any of the port spots. Aircraft recover one at a time with a small interval between recoveries. Recoveries normally follow the launching of a wave.
- 6. Elevator service Described above
 Distributions for these service activities are presented in the discussion of
 Chapter 4.

The normal flow of helicopters and AV-8s through the system is shown in figures 2 and 3.

FIGURE 2. AV-8 FLOW THROUGH SYSTEM

FIGURE 3. HELICOPTER FLOW THROUGH SYSTEM

Chapter 3

MODEL DESCRIPTION

The model was coded in Simscript II.5 and run on a VAX 11/785. A model listing appears in appendix A. This chapter describes how the model works with a section that details the model events, a section that defines the model entities and their attributes, and a section that presents potential measures of effectiveness that are currently in the model.

3.1 EVENT DESCRIPTIONS

In this section, the model events are described. Each subsection addresses one event with a text description followed by a flowchart. The order in which the events appear is alphabetical.

Several comments concerning conventions and symbols in the flowcharts may be helpful to the reader. There is a distinction between AC and A/C; AC refers to the aircraft that has been passed to the event, whereas A/C refers to all other aircraft that are treated during the event process. The triangular node indicates the beginning of an event. The rectangular node represents a positive action that occurs at that point in the model, whereas the rectangular node with extra vertical lines represents a comment concerning a state or a set of actions. There are two symbols that transfer the flow to different areas of the event, signified by a node with a single letter. The first symbol is a circle, and in this case, the flow is transferred to another area on the same page. The other symbol has five sides, and transfers the flow to another page of this event. The return node indicates a state in the simulation where control is returned to the Simscript scheduler, and marks the end of activity in the current event.

3.1.1 EVENT AC.LAUNCHED GIVEN AC

The occurrence of this event signals the departure of AC from the ship. The event DELTA.ARRIVAL is scheduled by computing the time required to make the round trip to the landing zone and adding the time (random) necessary to accomplish its mission (time to unload). A deck spot becomes available, and a SPOT.OPEN event is scheduled.

EVENT AC.LAUNCHED GIVEN AC

and and a factor in the last of the last o

3.1.2 EVENT AC.LOADED GIVEN AC

The occurrence of this event signals the completion of the loading process for the aircraft AC. The action that occurs next depends on the type of aircraft that AC is and its launch time.

If AC is an AV-8, an ordnance team becomes available, and if another AV-8 is waiting for an ordnance team, — AC.LOADED is scheduled. If AC has a launch time in the next 40 minutes, and both AV-8s in this flight have now been loaded, they are ready to be respotted to the takeoff line prior to launch. This is accomplished by filing them in the spot queue and scheduling a SPOT.OPEN event.

If AC is a helicopter, has a launch time in the next 40 minutes, and all aircraft of this flight have been loaded (launch time should be less than 10 minutes away if all aircraft are loaded), then a FLIGHT.LAUNCH event is scheduled.

EVENT AC.LOADED GIVEN AC

3.1.3 EVENT AC.RECOVERED GIVEN AC

This event occurs when the aircraft AC has returned to the ship and landed on one of the six deck spots. AC will remain on this deck spot only if all of the following conditions are satisfied:

- : AC must have a launch time scheduled to occur in the next 40 minutes
- : AC's presence on this deck spot must not interfere with the next AV-8 launch
 - : AC must be compatible to launch from this deck spot
 - : AC must be a helicopter

If all of these conditions are satisfied, the next step for this helicopter is to schedule an AC.REFUELED event.

If any of these conditions are not met, AC is sent to the appropriate bone if there is space in that bone. If the bone is full, AC is still sent to the bone if AC has a scheduled launch time; otherwise, AC is sent to the hangar. Helicopters require a tug in all cases for deck movement. AV-8s can respot to the bone under their own power, but require a tug when going to the hangar (elevator).

If the bone was full and AC has scheduled a BONE.ARRIVAL, the aircraft in that bone are checked for any that do not have a future launch time. If one is found, this aircraft is sent to the hangar (elevator).

EVENT AC.RECOVERED GIVEN AC

CONTINUED: EVENT AC.RECOVERED

CONTINUED: EVENT AC.RECOVERED

3.1.4 EVENT AC.REFUELED GIVEN AC

The occurrence of this event signals the completion of the refueling process for the aircraft AC. The action that occurs next depends on the type of aircraft that AC is and the launch time of AC.

If AC is an AV-8 and the loading of ordnance has not started, regardless of the next launch time for AC, the next step is to schedule an AC.LOADED event. Although not currently played in the model, these aircraft without launch times can be thought of as aircraft that are being readied for on-call missions.

If AC has a launch time in the next 40 minutes and is located on a deck spot, then it must be a helicopter, because AV-8s are not refueled on deck spots. The next step for this helicopter is to schedule an AC.LOADED event. The loading event will be scheduled to occur no more than 10 minutes prior to the scheduled launch time.

In all cases, a refueler becomes available when an AC.REFUELED event occurs. If an aircraft is waiting to be refueled, it is removed from the refueler queue and an event AC.REFUELED is scheduled.

EVENT AC.REFUELED GIVEN AC

MOTOR STATEMENT OF THE STATE OF

3.1.5 EVENT AC.RESPOTTED GIVEN AC

The occurrence of this event signals that AC has arrived at one of the six deck spots from which an aircraft may launch.

If AC is an AV-8, the movement has been made under its own power to the short takeoff line without a tug. The respotted AV-8 has been fueled and loaded, and is ready for takeoff. If both AV-8s in this flight are ready to launch, a FLIGHT.LAUNCH event is scheduled.

If AC is a helicopter, the movement has been made with a tug, and this tug becomes available to move another aircraft. If the helicopter has not been refueled, then the next event for this helicopter is an AC.REFUELED. If the helicopter has been refueled, the the next event scheduled will be an AC.LOADED. The loading event will be scheduled to occur no more that 10 minutes prior to the helicopter's scheduled launch time.

If there are aircraft waiting for a tug, and a tug is now free, the first aircraft in tug queue is removed from the queue and the appropriate event is scheduled to move it to its destination. If this aircraft was located on the elevator, the elevator becomes available.

If the elevator is available and there are aircraft waiting in the elevator queue, the first aircraft in the queue whose destination is able to receive it is removed from queue, and an ELEVATOR.ARRIVAL event is scheduled.

EVENT AC.RESPOTTED GIVEN AC

CONTINUED: EVENT AC.RESPOTTED

CONTINUED: EVENT AC.RESPOTTED

3.1.6 EVENT BONE.ARRIVAL GIVEN AC

The occurrence of this event signals that AC has respotted to either the forward or aft bone.

If ACs last location was a deck spot, the spot is now available and a SPOT.OPEN event is scheduled.

If AC requires fuel and a refueler is available, an event AC.REFUELED is scheduled. Otherwise, AC is filed in the queue to await the next available refueler.

If there are aircraft waiting for a tug, and a tug is now free, the first aircraft in tug queue is removed from the queue and the appropriate event is scheduled to move it to its destination. If this aircraft was located on the elevator, the elevator becomes available.

If the elevator is available and there are aircraft waiting in the elevator queue, the first aircraft in the queue whose destination is able to receive it is removed from queue, and an ELEVATOR.ARRIVAL event is scheduled.

EVENT BONE.ARRIVAL GIVEN AC

managa kanaga kanag

CONTINUED: EVENT BONE.ARRIVAL

3.1.7 EVENT DECK.ARRIVAL GIVEN AC

This event occurs when AC has arrived by elevator to the flight deck. In all cases, a tug is required to move AC to and from the elevator. If a tug is available, the event BONE.ARRIVAL or AC.RESPOTTED is scheduled depending on the destination of AC. Also, if a tug is available, the elevator will soon be available, and the elevator queue is checked for waiting aircraft.

If an aircraft is waiting for the elevator, and its destination is the hangar, there must be space available in the hangar. If these conditions are met, the elevator is reserved. If a tug is available, an ELEVATOR.ARRIVAL event is scheduled.

If an aircraft is waiting for the elevator, and its destination is the flight deck, the elevator is reserved and an ELEVATOR.ARRIVAL event is scheduled. (The tug on the hangar deck is assumed to be available whenever the elevator is.)

EVENT DECK.ARRIVAL GIVEN AC

CONTINUED: EVENT DECK.ARRIVAL

3.1.8 EVENT DECK.DECISION GIVEN FLIGHT

The primary function of this event is to ensure that aircraft with approaching launch times are preparing to launch. If an aircraft is not likely to be ready, it is replaced with another aircraft if one is available. The checking of aircraft statuses takes place 40 minutes prior to the scheduled launch time. If an aircraft has not begun making the necessary preparations, the appropriate event(s) are scheduled.

EVENT DECK.DECISION GIVEN FLIGHT

መመከተዋቸው የመመከተቸው መመጀመር እና ተመጀመር የተለጉ ተስፈርተ የተለከተ የተ

CONTINUED: EVENT DECK.DECISION

CONTINUED: EVENT DECK.DECISION

CONTINUED: EVENT DECK.DECISION

3.1.9 EVENT DELTA.ARRIVAL GIVEN AC

This event occurs when AC has completed its mission and returned to the ship's vicinity for recovery. AC enters the holding (delta) pattern to await clearance to land. The fuel status of each aircraft in the delta pattern is updated and checked to see if it entitles the aircraft for priority or emergency treatment.

If an aircraft is qualified for special treatment, either event SPOT EMERGENCY or SPOT.PRIORITY, as appropriate, is scheduled.

If no aircraft qualifies for special treatment, aircraft in the spot queue are considered for recovery or respotting to any open spots. Any aircraft that are compatible with an open spot, and will not interfere with another aircraft's launch are scheduled for an AC.RECOVERED or AC.RESPOTTED event.

EVENT DELTA, ARRIVAL GIVEN AC

(CONTINUED)
EVENT DELTA.ARRIVAL GIVEN AC

33.7.2.2.2

(CONTINUED) EVENT DELTA.ARRIVAL

3.1.10 EVENT DELTA.UPDATE.CHK

This event occurs at least once every five minutes. Its purpose is to ensure that the fuel levels of aircraft in the delta pattern are remaining at safe levels. It accomplishes this by ensuring that the delta update algorithm in the DELTA.ARRIVAL and SPOT.OPEN events is activated at least once every five minutes.

If five minutes have passed since the last update, a SPOT.OPEN event is scheduled.

EVENT DELTA.UPDATE.CHK

3.1.11 EVENT ELEVATOR.ARRIVAL GIVEN AC

This event occurs when the aircraft AC has been respotted to the elevator and tied down before the movement between the hangar and flight decks.

If AC is going to the hangar deck, a tug becomes available, and a HANGAR.ARRIVAL event is scheduled. If AC is coming from a deck spot, the deck spot becomes available and a SPOT.OPEN event is scheduled.

If AC is going to the flight deck, a DECK.ARRIVAL event is scheduled. If there are aircraft waiting for a tug, and a tug is now free, the first aircraft in tug queue is removed from the queue and the appropriate event is scheduled to move it to its destination.

EVENT ELEVATOR.ARRIVAL GIVEN AC

3.1.12 EVENT FLIGHT.CHECK GIVEN FLIGHT

The function of this event is to check whether or not a flight has launched, and if it has not, determine whether or not it should be cancelled. This event is scheduled in event DECK.DECISION, and occurs shortly after the scheduled launch time of FLIGHT.

If this is a flight of helicopters, the aircraft ready for takeoff will be launched at this point. If this is the fourth time that a FLIGHT.CHECK event has occurred for this FLIGHT, the aircraft that are not on deck in the final stages of preparation will have their launch times cancelled.

If this is a flight of AV-8s, both aircraft in the flight must be ready prior to launching the flight, because AV-8s always fly in groups of two. After a certain amount of time past the scheduled launch time, the flight will be cancelled.

If the flight has not been cancelled, another event FLIGHT.CHECK is scheduled.

EVENT FLIGHT.CHECK GIVEN FLIGHT

3.1.13 EVENT FLIGHT.LAUNCH GIVEN FLIGHT

This event occurs when all aircraft scheduled to launch in this flight have completed refueling and loading, and are ready on deck spots to launch. Each aircraft in the flight has an event AC.LAUNCHED scheduled, and an event SPOT.OPEN is scheduled to follow the launch of the last aircraft in this flight.

If this was the last flight in the PLAN or SCHEDULE, an event STOP.SIMULATION is scheduled.

EVENT FLIGHT.LAUNCH GIVEN FLIGHT

3.1.14 EVENT HANGAR.ARRIVAL GIVEN AC

This event occurs when AC has arrived by elevator to the hangar deck. The hangar deck's tug is always available to remove aircraft from the elevator, so the elevator will soon become available, and the elevator queue is checked for waiting aircraft.

If an aircraft is waiting for the elevator, and its destination is the hangar, the hangar is checked to determine if there is space available. If these conditions are met, the elevator is reserved. If a tug is available, an ELEVATOR.ARRIVAL event is scheduled.

If an aircraft is waiting for the elevator, and its destination is the flight deck, the elevator is reserved and an ELEVATOR.ARRIVAL event is scheduled. (The tug on the hangar deck is assumed to be available whenever the elevator is.)

EVENT HANGAR.ARRIVAL GIVEN AC

ELECTRONIC SECURISE SECURISE

SAVARA INSPERIO INSPERIO INSPERIO

CONTINUED: EVENT HANGAR.ARRIVAL

3.1.15 EVENT SPOT.EMERGENCY GIVEN AC

This event occurs when aircraft AC has entered a fuel emergency situation while waiting in the delta pattern to be assigned a deck spot for recovery to the ship.

If there are any deck spots open, the first open spot is reserved for AC and an AC.RECOVERED event is scheduled.

If there are no open spots, but there is a deck spot with an aircraft transiting to or from it, then this spot is reserved for AC, and an AC.RECOVERED event is scheduled. If the aircraft in transit was not leaving the spot, the relocation event for this aircraft is cancelled and the aircraft is filed in the spot queue to be considered for another spot.

If there are no open spots and no aircraft in transit to or from a spot, it is necessary to displace an aircraft to recover AC. The fuel status and launch time of each aircraft currently on a deck spot is checked to find an aircraft that has at least half a tank of fuel and is capable of launching immediately. If an aircraft is found meeting these requirements, an AC.LAUNCHED event is scheduled to clear a spot for AC to recover. If an aircraft cannot be found to launch, the aircraft on a deck spot with the latest launch time will schedule a BONE.ARRIVAL event. If the displaced aircraft was being refueled or loaded, the scheduled completion of these events is cancelled. If the emergency aircraft and the displaced aircraft are of the same type, and the displaced aircraft has an earlier scheduled launch time, these aircraft exchange launch times to minimize the potential for launch delay caused by the emergency recovery.

EVENT SPOT.EMERGENCY GIVEN AC

3.1.16 EVENT SPOT OPEN

This event occurs at regular intervals (see event DELTA.UPDATE.CHK), and whenever a deck spot has been vacated by another aircraft. The fuel status of each aircraft in the delta pattern is updated and checked to see if it entitles the aircraft for priority or emergency treatment.

If an aircraft is qualified for special treatment, either event SPOT.EMERGENCY or SPOT.PRIORITY, as appropriate, is scheduled.

If no aircraft qualifies for special treatment, aircraft in the spot queue are considered for recovery or respotting to any open spots. Any aircraft that are compatible with an open spot, and will not interfere with another aircraft's launch are scheduled for an AC.RECOVERED or AC.RESPOTTED event.

EVENT SPOT.OPEN

(CONTINUED) EVENT SPOT.OPEN

(CONTINUED) EVENT SPOT.OPEN

3.1.17 EVENT SPOT.PRIORITY GIVEN AC

This event occurs when aircraft AC has entered a fuel priority situation while waiting in the delta pattern to be assigned a deck spot for recovery to the ship.

If there are any deck spots open, the first open spot is reserved for AC and an AC.RECOVERED event is scheduled.

If there are no open spots, but there is a deck spot with an aircraft transiting to or from it, then this spot is reserved for AC, and an AC.RECOVERED event is scheduled. If the aircraft in transit was not leaving the spot, the relocation event for this aircraft is cancelled and the aircraft is filed in the spot queue to be considered for another spot.

EVENT SPOT.PRIORITY GIVEN AC

3.2 DESCRIPTION OF ENTITIES AND THEIR ATTRIBUTES

The model utilizes two entity structures: the permanent entity ACE and the temporary entity FLIGHTE. A copy of ACE is created for each aircraft that participates in the simulation. The attributes of ACE are defined as follows:

:AC.DELTA.ARRIVAL.TIME - The time at which ACE arrived to the delta pattern

:AC.DESTINATION - The next location planned for ACE

:AC.FLYING.TIME - The amount of time that ACE can/could remain airborne with the fuel it currently has on board

:AC.FUEL.STAT - The percent of a full fuel tank that ACE has on board

:AC.ID - An identification number assigned to ACE

:AC.LAUNCH.TIME - ACE's next scheduled launch time

:AC.LOAD.STAT - The percent of a full load that ACE has on board

:AC.LOCATION - The present location of ACE

:AC.OP.STAT - The operational status of ACE

:AC.PRIORITY - The priority assigned to ACE for recovery when in the delta pattern

:AC.RECOVERY.TIME - The time at which ACE was recovered to the flight deck

:AC.SERVICE.FLAG - Equals 1 if ACE is being loaded or refueled, 0 otherwise

:AC.TAKEOFF.TIME - The time at which ACE launched from the ship :AC.TYPE - Equals 1 if ACE is a CH-46, 2 if a CH-53, and 3 if an AV-8

A FLIGHTE entity is created for each flight that is to be scheduled during the simulation. The attributes of FLIGHTE are defined as follows:

:FLT.AC.NUM - The number of aircraft assigned to FLIGHTE

:FLT.AC.RDY - The number of aircraft assigned to FLIGHTE that are ready to launch

:FLT.AC.TYPE - The type of aircraft in this flight; corresponds with AC.TYPE

:FLT.DELAY - The amount of time that FLIGHTE is late for takeoff :FLT.NUM - An identification number assigned to FLIGHTE

:FLT.TIME - The time that FLIGHTE is scheduled to launch :FLT.WAVE - The set that contains the aircraft assigned to FLIGHTE

3.3 MEASURES OF EFFECTIVENESS

The model currently has a number of bookkeeping routines built in that generate a number of potential measures of effectiveness. Tables 1-3 list portions of the summary file that displays this output for a sample run.

The first table compares the planned flight schedule with the actual launches as they occurred. This information allows the user to investigate delays and cancelled missions by aircraft and flight. The second table displays in chronological order the times at which launches occurred by aircraft type. This information can be used to create histograms and compare launch rates. The third table lists a number of measures that track utilization, average queue size, and completion times for a number of service related activities and structures.

TABLE 1

COMPARISON OF THE PLANNED AND ACTUAL LAUNCH TIMES (OUTPUT FOR 10 AV-8 CASE)

FLIGHT	1	SCHEDULED	ΑT	20	LAUNCHED	A/C	1	ΑT	14.3
FLIGHT	1	SCHEDULED	ΑT	20	LAUNCHED	A/C	2	AT	14.8
FLIGHT	1	SCHEDULED	ΑT	20	LAUNCHED	A/C	3	AT	15.2
FLIGHT	1	SCHEDULED	AT	20	LAUNCHED	A/C	4	ΑT	15.5
FLIGHT	2	SCHEDULED	ΑT	21	LAUNCHED	A/C	11	ΑT	16.8
FLIGHT	2	SCHEDULED	AT	21	LAUNCHED	A/C	12	ΑT	17.5
FLIGHT	3	SCHEDULED	ΑT	35	LAUNCHED	A/C	5	ΑT	31.1
FLIGHT	3	SCHEDULED	AT	35	LAUNCHED	A/C	6	AT	31.4
FLIGHT	3	SCHEDULED	ΑT	35	LAUNCHED	A/C	7	AT	31.9
FLIGHT	3	SCHEDULED	ΑT	35	LAUNCHED	A/C	8	ΑT	32.3
FLIGHT	4	SCHEDULED	AT	36	LAUNCHED	A/C	13	ΑT	29.5
FLIGHT	4	SCHEDULED	ΑT	36	LAUNCHED	A/C	14	ΑT	30.1
FLIGHT	5	SCHEDULED	AT	45	LAUNCHED	A/C	17	ΤA	43.9
FLIGHT	5	SCHEDULED	AT	45	LAUNCHED	A/C	18	ΑT	44.6
FLIGHT	6	SCHEDULED	ΑT	50	LAUNCHED	A/C	19	ΑT	50.0
FLIGHT	6	SCHEDULED	ΑT	50	LAUNCHED	A/C	20	ΑT	50.6
FLIGHT	7	SCHEDULED	ΑT	65	LAUNCHED	A/C	9	AT	60.7
FLIGHT	7	SCHEDULED	ΑT	65	LAUNCHED	A/C	10	AT	60.1
FLIGHT	8	SCHEDULED	ΑT	66	LAUNCHED	A/C	15	ΑT	63.8
FLIGHT	8	SCHEDULED	ΑT	66	LAUNCHED	A/C	16	AT	63.1
FLIGHT	9	SCHEDULED	ΑT	75	LAUNCHED	A/C	21	AT	71.7
FLIGHT	9	SCHEDULED	ΑT	75	LAUNCHED	A/C	22	ΑT	72.2
						,			,
FLIGHT	26	SCHEDULED	ΑT	216	LAUNCHED	A/C	13	ΑT	233.1
FLIGHT	26	SCHEDULED	ΑT	216	LAUNCHED	A/C	14	AT	232.6
FLIGHT	27	SCHEDULED	ΑT	225	LAUNCHED	A/C	17	AT	225.5
FLIGHT	27	SCHEDULED	ΑT	225	LAUNCHED	A/C	18	ΑT	226.1
FLIGHT	28	SCHEDULED	ΑT	230	LAUNCHED	A/C	19	ΑT	0
FLIGHT	28	SCHEDULED	ΑT	230	LAUNCHED	A/C	20	AT	Ö
FLIGHT	29	SCHEDULED	ΑT	245	LAUNCHED	A/C	9	AT	253.1
FLIGHT	29	SCHEDULED	ΑT	245	LAUNCHED	A/C	10	ΑT	253.5
FLIGHT	30	SCHEDULED	ΑT	246	LAUNCHED	A/C	15	AT	264.7
FLIGHT	30	SCHEDULED	ΑT	246	LAUNCHED	A/C	16	AT	277.1
FLIGHT	31	SCHEDULED	ΑT	255	LAUNCHED	A/C	21	ΑT	259.9
FLIGHT	31	SCHEDULED	ΑT	255	LAUNCHED	A/C	22	AT	260.5
FLIGHT	32	SCHEDULED	AT	260	LAUNCHED	A/C	23	ΑT	0
FLIGHT	32	SCHEDULED	ΑT	260	LAUNCHED	A/C	24	AT	0
FLIGHT	42	SCHEDULED	ΑT	345	LAUNCHED	A/C	21	ΑT	345.9
FLIGHT	42	SCHEDULED	AΤ	345	LAUNCHED	A/C	22	AT	345.3
FLIGHT	43	SCHEDULED	AT	350	LAUNCHED	A/C	23	AT	351.0
FLIGHT	43	SCHEDULED	AT	350	LAUNCHED	A/C	24	AT	351.0
			•••	330	ARIONOLIED	A) U	۷.4	V I	221.3

TABLE 2

HISTOGRAM DATA

AC.TYPE AC.TYPE	-	1	LAUNCH LAUNCH		1 2	LAUNCH.TIME	=	14.3 14.8
AC. TYPE	_	ī	LAUNCH		3	LAUNCH.TIME	_	15.2
AC.TYPE	_	ī	LAUNCH		4	LAUNCH.TIME	_	15.5
AC.TYPE	_	ī	LAUNCH		5	LAUNCH. TIME	=	31.1
AC.TYPE	_	1	LAUNCH		6	LAUNCH. TIME	=	31.4
AC.TYPE	_	1	LAUNCH		7	LAUNCH. TIME	=	31.9
AC.TYPE	_	1	LAUNCH		8	LAUNCH.TIME	_	32.3
AC.TYPE	-	1	LAUNCH	NO.	9	LAUNCH.TIME	_	60.1
AC.TYPE	-	1	LAUNCH	NO.	10	LAUNCH.TIME	_	60.7
AC.TYPE	_	2	LAUNCH	NO.	1	LAUNCH.TIME	=	16.8
AC.TYPE	_	2	LAUNCH	NO.	2	LAUNCH.TIME	_	17.5
AC.TYPE	-	2	LAUNCH	NO.	3	LAUNCH.TIME	=	29.5
AC.TYPE	-	2	LAUNCH		4	LAUNCH.TIME	=	30.1
AC.TYPE	_	2	LAUNCH		5	LAUNCH.TIME	-	63.1
AC.TYPE	-	2	LAUNCH		6	LAUNCH.TIME	_	63.8
AC.TYPE	-	2	LAUNCH	NO.	7	LAUNCH.TIME	_	95.6
AC.TYPE	-	2	LAUNCH		8	LAUNCH.TIME	-	96.1
AC.TYPE	-	2	LAUNCH		9	LAUNCH.TIME	-	121.8
AC.TYPE	-	2	LAUNCH	NO.	10	LAUNCH.TIME	-	122.1
AC.TYPE	_	3	LAUNCH	NO.	1	LAUNCH.TIME	_	43.9
AC.TYPE	_	3	LAUNCH	NO.	2	LAUNCH.TIME	-	44.6
AC.TYPE	_	3	LAUNCH	NO.	3	LAUNCH.TIME	=	50.0
AC.TYPE	-	3	LAUNCH	NO.	4	LAUNCH.TIME	_	50.6
AC.TYPE	-	3	LAUNCH	NO.	5	LAUNCH.TIME	=	71.7
AC.TYPE	-	3	LAUNCH	NO.	6	LAUNCH.TIME	=	72.2
AC.TYPE	-	3	LAUNCH		7	LAUNCH.TIME	-	77.2
AC.TYPE	-	3	LAUNCH		8	LAUNCH.TIME	-	77.7
AC.TYPE	-	3	LAUNCH		9	LAUNCH.TIME	-	108.0
AC.TYPE	-	3	LAUNCH	NO.	10	LAUNCH.TIME	-	108.4
AC.TYPE	_	3	LAUNCH	NO.	27	LAUNCH.TIME	_	329.6
AC.TYPE	_	3	LAUNCH		28	LAUNCH.TIME	_	330.2
AC.TYPE	_	3	LAUNCH		29	LAUNCH.TIME	_	345.9
AC.TYPE	_	3	LAUNCH		30	LAUNCH.TIME	_	346.9
AC.TYPE	_	3	LAUNCH		31	LAUNCH. TIME	_	351.0
AC.TYPE	-	3	LAUNCH	NO.	32	LAUNCH.TIME	_	351.3

TABLE 3 MEASURES OF EFFECTIVENESS

	Average	<u>Variant</u>	Minimum	Maximum
SPOT.Q	4,21	7.97		11.00
REFUEL.Q	0.01	0.01		2.00
REFUELER	0.82	1.19		4.00
N.DELTA.PATTERN	4.07	8.17		10,00
N.BONE.FWD	1.68	4.86		6,00
N.BONE.AFT	6.10	3.44		10.00
BONE.TOTAL	8.37	8.57		12.00
N. HANGAR	2.27	15.37		13.00
TUG	0.39	0.59		4.00
N.TUG.Q	0.01	0.01		2,00
LOADER	1.33	0.74		2.00
N.LOADER.Q	0.69	0.84		3.00
LAUNCH.DELAY	6.04	80.95		31.11
HELO.MISSION.LENGTH	57.78	11.73	51.22	67.13
AV8.MISSION.LENGTH	29.86	20.87	23.70	40.48
HELO.FLYING.TIME	79.71	136.27	55.61	117.09
AV8.FLYING.TIME	45.42	39.60	29.38	55.61
HELO.RECOVER.TIME	21.93	144.35	3.38	56.94
AV8.RECOVER.TIME	15.55	49.68	3.69	30,49
TTLOAD	9.01	69.72	1.23	28.36
TTRESPOT	3.43	1.36	0.47	5.83
TIRECOVER	3.49	0.75	1.82	6.45
TTARRIV.ELEVATOR	6.56	2.33	3.59	8.94
TTARRIV.DECK	1.52	0.47	0.80	2.85
TTARRIV. HANGAR	1.32	0.32	0.62	2.81
TTUNLOAD	16.68	14.79	10.20	27.14

NO. EMERG.RECOVERIES = 0 NO. PRIORITY.RECOVERIES = 14

NO. STD.RECOVERIES - 102 NO. LAUNCHES = 96

NO. REPLACED.AC = 0

NO. CANCELLED.MISSIONS = 6

NO. FLIGHTS STILL IN SCHEDULE = 0 STILL IN PLAN = 0

Chapter 4

ANALYSIS OF THE AV-8/HELO MIX PROBLEM

The inputs that were used to run the model for this problem are listed in table 4. The distribution inputs are based on exercise results, however, all have been modified to account for expedients that would be taken during the conduct of an actual assault. These modifications ruled out using distributions which fit the exercise data, but provided approximations for the minimum, maximum, mean, and mode. In several cases, a shifted Beta distribution was chosen, and the parameters were determined by these approximations. Table 5 presents the distributions with associated parameters used for the event scheduling in model runs, and the random number stream assignments. In the absence of actual assault data, goodness-of-fit tests were not conducted.

The simulation begins with the aircraft at locations and statuses as shown in table 6. Helicopters of the second wave are in the delta pattern with full fuel tanks to minimize the interval between the first and second wave; it takes less time to recover-load-launch than it does to respot-start-load-launch. The first flight of AV-8s launches after the second wave. Thereafter, an AV-8 flight follows every wave if an AV-8 flight is available. The schedule of launches for each case is shown in table 7.

The primary MOE for this problem is the force buildup rate ashore for each of the aircraft mixes. The model tracks the buildup rate by recording the time that each aircraft launches; this removes from consideration any

TABLE 4

MODEL INPUTS FOR AIRCRAFT TYPES

	<u>CH-46</u>	<u>CH-53</u>	<u>AV-8</u>
AVERAGE FLYING SPEED (m/s)	65	65	200
AVERAGE FLYING TIME	120	150	75
FUEL CAPACITY (1b)	15,000	25,000	15,000
AVERAGE TIME TO REFUEL	5	6	5
AVERAGE TIME TO LOAD	5	10	16
STD DEV OF TIME TO LOAD			2
AVERAGE TIME TO RECOVER	4	4	3
STD DEV OF TIME TO RECOVER	. 5	. 5	. 5
AVERAGE TIME TO RESPOT	4	4	3
STD DEV OF TIME TO RESPOT	1	1	1
AVERAGE TIME TO MOVE TO ELEVATOR	6	6	6
STD DEV OF TIME TO MOVE TO ELEVATOR	1.5	1.5	1.5
AVERAGE TIME TO COMPLETE MISSION	16	16	16
EMERGENCY FUEL LEVEL (%)	17	15	25
PRIORITY FUEL LEVEL (%)	25	20	35
PREFERRED LAUNCH SPOTS	1,2,3,4	5,6	1,2
PREFERRED RECOVERY SPOTS	1,2,3,4	5,6	1,2,5,6

NOTE: All times are in minutes.

TABLE 5

DISTRIBUTION AND RANDOM NUMBER STREAM ASSIGNMENTS

Event	Distribution	Stream
AC.LAUNCHED	UNIFORM (.5, 1) + INTERVAL FOR OTHER LAUNCHES	5
AC.LOADED	NORMAL SEE TABLE 4 FOR PARAMETERS SPECIFIC TO AIRCRAFT TYPE	3
AC.RECOVERED	NORMAL SEE TABLE 4	1
AC.REFUELED	FUNCTION OF FUEL STATUS AND TIME TO REFUEL PLUS DELAY NORMAL (1., .25)	4
AC.RESPOTTED	NORMAL SEE TABLE 4	2
BONE.ARRIVAL	NORMAL SAME AS AC.RESPOTTED	2
DECK.ARRIVAL	BETA (1.5, 5) MIN = .5 MAX = 4.5 MEAN = 1.4 MODE = .9	7
DELTA.ARRIVAL	FUNCTION OF DISTANCE TO SHORE AND A/C SPEED PLUS TIME TO UNLOAD BETA (1.5, 3)	6
ELEVATOR.ARRIVAL	NORMAL (6, 1.5)	8
FLIGHT.LAUNCH	UNIFORM (.1, .5)	9
FLIGHT.CHECK	BETA (1.5, 3) MIN = 1 MAX = 3 MEAN = 1.7 MODE = 1.4	9
HANGAR.ARRIVAL	BETA (1.5, 5) MIN = .5 MAX = 4.5 MEAN = 1.4 MODE = .9	7

TABLE 6
INITIAL AIRCRAFT LOCATIONS AND STATUSES

Aircraft <u>number</u>	Aircraft type	<u>Location</u>	Fuel status	Load <u>status</u>
1	CH-46	FWD BONE	1.0	. 0
2	CH-46	FWD BONE	1.0	. 0
3	CH-46	FWD BONE	1.0	. 0
4	CH-46	FWD BONE	1.0	. 0
5	CH-46	DELTA	1.0	. 0
6	CH-46	DELTA	1.0	. 0
7	CH-46	DELTA	1.0	. 0
8	CH-46	DELTA	1.0	. 0
9	CH-46	FWD BONE	1.0	. 0
10	CH-53	FWD BONE	1.0	. 0
11	CH-53	AFT BONE	1.0	. 0
12	CH-53	AFT BONE	1.0	. 0
13	CH-53	DELTA	1.0	. 0
14	CH-53	DELTA	1.0	. 0
15	CH-53	AFT BONE	1.0	. 0
16	CH-53	AFT BONE	1.0	. 0
17	AV-8	AFT BONE	1.0	1.0
18	AV - 8	AFT BONE	1.0	1.0
19	AV-8	AFT BONE	1.0	1.0
20	AV - 8	AFT BONE	1.0	1.0
21	AV - 8	HANGAR	. 0	. 0
22	AV-8	HANGAR	. 0	. 0
23	AV-8	HANGAR	. 0	. 0
24	8 - VA	HANGAR	. 0	.0
25	8 - VA	HANGAR	. 0	. 0
26	AV-8	HANGAR	. 0	. 0
27	AV-8	HANGAR	. 0	. 0
28	AV-8	HANGAR	. 0	. 0

TABLE 7
FLIGHT SCHEDULE FOR 6, 8, 10, AND 12 AV-8 CASES

				N	JMBER OF	F_AV-8'	<u>s</u>
WAVE NUMBER	LAUNCH TIME	AIRCRAFT TYPE	NUMBER OF AIRCRAFT	12	<u>10</u>	8_	6_
1	20	CH-46	4				
1	21	CH-53	2				
2	35	CH-46	4				
2	36	CH-53	2				
	45	AV - 8	2	Х	Х	X	X
	50	AV - 8	2	Х	Х	X	
3	65	CH-46	2				
3	66	CH-53	2				
	75	AV - 8	2	Х	X	Х	Х
	80	AV - 8	2	X	X	•	
4	95	CH-46	4				
4	96	CH-53	2				
•	105	AV - 8	2	Х	Х	Х	Х
	110	AV - 8	2	X	Λ	Λ	• •
5	125	CH-46	4	Λ			
5	126	CH - 53	2				
,	135	AV - 8	2	х	Х	Х	Х
	140	AV - 8	2	X	X	X	
6	155	CH-46	2	٨	Λ.	Λ	
6	156						
0		CH - 53	2	••			
	165	AV-8	2	X	X	Х	Х
7	170	AV - 8	2	Х	X		
7	185	CH-46	4				
7	186	CH-53	2				
	195	AV - 8	2	X	Х	X	Х
•	200	AV - 8	2	X			
8	215	CH-46	4				
8	216	CH-53	2				
	225	AV - 8	2	Х	X	X	X
	230	AV - 8	2	X	Х	X	
9	245	CH-46	2				
9	246	CH-53	2				
	255	8 - VA	2	X	X	X	X
	260	AV - 8	2	Х	X		
10	275	CH-46	4				
10	276	CH-53	2				
	285	AV - 8	2	X	X	Х	X
	290	AV - 8	2	Х			
11	305	CH-46	4				
11	306	CH-53	2				
	315	AV - 8	2	Х	Х	Х	Х
	320	AV - 8	2	X	X	X	
12	335	CH-46	2				
12	336	CH-53	2				
_ _	345	AV - 8	2	Х	Х	X	Х
	350	AV - 8	2	<u> </u>	<u>_X</u>	••	.,
						_	_
		NUMBER OF	AV-8 FLIGHTS:	22	19	15	::

NOTE: X signifies that the AV-8 flight is scheduled for that AV-8 $_{
m case}$.

factors that might affect the transit from ship to shore that are not resident in the flight deck operations. In other words, the best case is the case that is able to launch the most aircraft in the shortest time. Three other MOEs that are related to buildup are the average launch delay, the number of cancelled launches, and the number of AV-8 launches. Table 8 presents summary statistics for each case after ten replicates.

In order to introduce positive correlation between the cases, the method of common random numbers was employed as a variance reduction technique. The ten replicates for the twelve AV-8 case were run and the initial seeds for each random number stream were saved for each replicate. The ten replicates were then run for the other cases using the same initial seeds for each replicate.

The addition of two AV-8s from six to eight provides potentially eight more AV-8 sorties, with an average of 7.8 more sorties realized. The penalty paid for this increase is a reduction in the amount of time the average launch precedes its scheduled time by approximately 80 seconds. As the average launch is still ahead of schedule, a subjective judgement is made that the gain in AV-8 sorties outweighs the loss in timeliness, and the discussion continues with the eight AV-8 case designated as more effective than the case with six AV-8s.

For the cases of ten and twelve AV-8s, adding additional AV-8s appears to actually reduce the expected number of AV-8 launches. The increase in the number of possible AV-8 launches is almost identical to the increase in the number of missions cancelled between the eight, ten, and twelve AV-8 cases. Table 9 shows the results of a closer look at the cases of eight and ten AV-8s using paired differences and paired-t confidence intervals

The results support the earlier observations, with 95 percent confidence, the expected number of additional missions cancelled lies in the interval (7.3.11.3), and the expected number of additional AV-8 sorties lies in the interval (-2.8.0.8). Also, the increase in launch delay is significant, and with 95 percent confidence the average launch will occur more that 5 minutes late for the 10 AV-8 case. Applying the Bonferroni inequality, the overall confidence that these three intervals simultaneously contain their respective true measures is at least 85 percent.

Figures 4-6 present graphical representations of the differences in buildup rate for the 6, 8, and 10 AV-8 cases. As can be seen, there is essentially no change in the buildup rate between the 6 and 8 AV-8 cases for helicopters, but there is a marked and consistent increase in the buildup rate for AV-8s. Between the 8 and 10 AV-8 cases, some decrease in the helicopter buildup

TABLE 8
SELECTED RESULTS AFTER TEN REPLICATES

NUMBER OF AV-8's	AVERAGE NUMBER MISSIONS CANCELLED	AVERAGE TAKEOFF DELAY	AVERAGE NUMBER AV-8 LAUNCHES	POSSIBLE NUMBER AV-8 LAUNCHES
6	0.0	-3.15	22.0	22
8	0.2	-1.73	29.8	30
10	9.5	4.67	28.8	38
12	16.1	6.38	28.6	ú 4≤4

TABLE 9

PAIRED-DIFFERENCE ANALYSIS FOR THE 8 AND 10 AV-8 CASES

	Number of	Number of missions cancelled	parlacu	Амегаде	gelab lakeoff delay	lelay	Number	Number of AV-8 launches	nches
ਜ਼ਬਦਾ। ਜ਼ਿੰਗ	sg=NA_ul	8 AV-Bs	10 = B	10. AV-8s	B. AV-Bs	10 = 8	10 AV-8s	8 AV-8s	10 - B
-	ت	O	ę	6.9	-1.4	7.4	32	30	2
٠,	13	^u	11	ก. ก	-1.5	6.9	56	28	-2
·•·	12	٥	12	7.5	-2.4	7.8	56	30	-2
- 7	10	C	10	ជ. ជ	-1.1	5.5	28	30	-2
u ⁼	37	Ç	ā	4.5	-3.4	7.9	34	30	7
٠	16	2	10	5.4	-1.6	7.0	28	30	-2
t	12	٥	12	6.9	-1.6	7.5	28	30	-2
æ	ω	Ō	ω	5.5	-0.£	6.1	30	30	0
æ	12	٥	12	2.1	8.0-	5.9	56	30	7-
<u>.</u>	80	Ō	∞	3.1	-2.9	6.0	30	30	0
			1			†			
	IX O D Z J	0 0 0 0 0	9.3 2.75 1.97 0.21 (7.3, 11.	~		6.4 1.50 1.08 0.17 (5.3, 7.5)		-)	-1.0 2.54 1.82 1.82 (-2.8, 0.8)

1 = absolute precision (a = .05)
 r = relative precision
(l = 95 percent confidence interval

BUILDUP RATE DURING A SIX-HOUR ASSAULT (CH-46) FIG. 4:

BUILDUP RATE DURING A SIX-HOUR ASSAULT (AV-8) FIG. 5:

BUILDUP RATE DURING A SIX-HOUR ASSAULT (CH-53) FIG. 6:

rate is seen, and while the AV-8 buildup rate for the 10 AV-8 case appears to be generally above that of the 8 AV-8 case, the frequent intersections of the two buildup lines imply that there is no real improvement offered by 10 AV-8s in the long run.

Given the inputs, initial conditions, and launch schedule presented in this section, the optimum number of AV-8s for simultaneous flight deck operations with a composite helicopter squadron during an assault from an LHA is eight. It should be noted again that the unavailability of AV-8s due to combat attrition and reliability failure has not been modelled. If these are relevant factors, then the MAU should deploy with additional AV-8s in order to sustain operations at the level of eight.

APPENDIX A

AV-8/HELD MIX SIMULATION

PREAMBLE

EVENT NOTICES INCLUDE AC.LAUNCHED, AC.RECGVERED, AC.RESPOTTED, AC.LOADED, AC.REFUELED, BONE.ARRIVAL, DELTA.ARRIVAL, DECK.DECISION, SPOT.OPEN, FLIGHT.LAUNCH, STOP.SIMULATION, DELTA.UPDATE.CHK, SPOT.EMERGENCY, SPOT.PRIORITY, HANGER.ARRIVAL, ELEVATOR.ARRIVAL, DECK.ARRIVAL, FLIGHT.CHECK

EVERY AC.LAUNCHED HAS AN AC1 AND AN F1
EVERY AC.RECOVERED HAS AN AC2
EVERY AC.RESPOTTED HAS AN AC3
EVERY AC.LOADED HAS AN AC4
EVERY AC.REFUELED HAS AN AC5
EVERY BONE.ARRIVAL HAS AN AC6
EVERY DELTA.ARRIVAL HAS AN AC7
EVERY DECK.DECISION HAS A FLIGHT1
EVERY FLIGHT.LAUNCH HAS A FLIGHT2
EVERY SPOT.EMERGENCY HAS AN AC8
EVERY SPOT.PRIORITY HAS AN AC9
EVERY HANGER.ARRIVAL HAS AN AC10
EVERY ELEVATOR.ARRIVAL HAS AN AC11
EVERY DECK.ARRIVAL HAS AN AC12
EVERY FLIGHT.CHECK HAS A FLIGHT3

PERMANENT ENTITIES

EVERY ACE HAS AN AC.ID, AN AC.TYPE, AN AC.LOCATION, AN AC.FUEL.STAT, AN AC.LOAD.STAT, AN AC.LOAD.STAT, AN AC.LAUNCH.TIME, AN AC.DELTA.ARRIVAL.TIME, AN AC.PRIORITY, AN AC.DESTINATION, AN AC.FLYING.TIME, AN AC.SERVICE.FLAG, AN AC.TAKEOFF.TIME, AND AN AC.RECOVERY.TIME

AND MAY BELONG TO THE SHIP

AND MAY BELONG TO THE HANGER-DECK

AND MAY BELONG TO THE BONE-FHD

AND MAY BELONG TO THE BONE-AFT

AND MAY BELONG TO THE DELTA-PATTERN

AND MAY BELONG TO THE SET.TEMP

AND MAY BELONG TO THE REFUELER-Q

AND MAY BELONG TO THE LOADER-Q "*AV-9*S ONLY

AND MAY BELONG TO THE LOAD.SET **AV-9*S ONLY

AND MAY BELONG TO THE TUG.Q

AND MAY BELONG TO THE FLT.HAVE

AND MAY BELONG TO THE SPOT.Q

AND MAY BELONG TO THE ELEVATOR-Q

AND MAY BELONG TO THE AC.RDY.SET
AND MAY BELONG TO THE AC.PRE.RDY.SET
AND MAY BELONG TO THE AC.NOT.RDY.SET

AND MAY BELONG TO THE ARRAY SPOT (THIS IS NOT A FUNCTIONAL LINE)

TEMPORARY ENTITIES

EVERY FLIGHTE HAS A FLT.TIME, A FLT.AC.TYPE, A FLT.AC.NUM, A FLT.NUM, A FLT.AC.ROY, AND A FLT.DELAY AND DWNS A FLT.WAVE AND MAY BELONG TO THE SCHEDULE AND MAY BELONG TO THE PLAN AND MAY BELONG TO THE AVB.PLAN

- AFTER FILING IN FLT.WAVE CALL CHECK2
- ** BEFORE FILING IN SCHEDULE CALL CHECKI
- AFTER FILING IN SCHEDULE CALL CHECKI

DEFINE MINUTES TO MEAN UNITS DEFINE MINUTE TO MEAN UNITS

DEFINE MANGER. DECK AS A SET RANKED BY AC. SP. STAT DEFINE BONE. FWO AS A SET RANKED BY AC. LAUNCH. TIME DEFINE BONE. AFT AS A SET RANKED BY AC.LAUNCH. TIME DEFINE REFUELER.Q AS A SET RANKED BY LOW AC. LAUNCH. TIME, THEN BY AC. LOCATION DEFINE LOADER Q AS A SET RANKED BY LOW AC. LAUNCH. TIME " AV8 "S DEFINE LCAD.SET AS A SET ""AV8"S DEFINE TUG-Q AS A SET RANKED BY LOW AC.LAUNCH.TIME DEFINE DELTA.PATTERN AS A SET RANKED BY LOW AC.FLYING.TIME DEFINE SET. TEMP AS A SET DEFINE ELEVATOR-Q AS A SET RANKED BY LOW AC.LOCATION. THEN BY LOW AC. LAUNCH. TIME DEFINE FLT.WAVE AS A SET RANKED BY LOW AC-LOCATION WITHOUT M ATTRIBUTE DEFINE SPOT. Q AS A SET RANKED BY LOW AC. LAUNCH.TIME, THEN BY LOW AC. FLYING. TIME DEFINE AC. RDY. SET AS A SET RANKED BY LDW AC. LOCATION " " ? WITHOUT M ATTRIBUTE DEFINE AC-PRE-RDY-SET AS A SET RANKED BY LOW AC-LOCATION ""?WITHOUT M ATTRIB: DEFINE AC.NOT.RDY.SET AS A SET RANKED BY LOW AC.LOCATION **?WITHOUT M ATTRIS:

NORMALLY MODE IS INTEGER

DEFINE F AS A 1-DIMENSIONAL ARRAY DEFINE ETA AS A REAL 1-DIMENSIONAL ARRAY DEFINE INDEX AS A 1-DIMENSIONAL ARRAY DEFINE TYPE.AC AS A 1-DIMENSIONAL ARRAY DEFINE SPEED.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE FUELCAP.AC AS A 1-DIMENSIONAL ARRAY DEFINE FUELUSE.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE TTREFUEL.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE TILDAD.AC AS' A 1-DIMENSIONAL REAL ARRAY DEFINE TTRESPOT.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE TTRECOVER.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE TTARRIV.E.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE S.TTLOAD.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE S.TTRESPOT.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE S.TTRECOVER.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE S.TTARRIV.E.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE EMERGENCY. STAT.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE PRIORITY.STAT.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE TTUNLJAD.AC AS A 1-DIMENSIONAL REAL ARRAY DEFINE NUM. LAUNCHES. AC AS A 1-DIMENSIONAL ARRAY DEFINE SPOT AS A 1-DIMENSIONAL ARRAY DEFINE SPOT. AC AS A 2-DIMENSICHAL ARRAY DEFINE FLTARRAY AS A 2-DIMENSIONAL ARRAY DEFINE HISTO. LAUNCHES AS A 2-DIMENSIONAL REAL ARRAY DEFINE FLT. RECORD AS A 3-DIMENSIONAL REAL ARRAY

THE SYSTEM OWNS A MANGER-DECK, A BONE-FWD,
A BONE-AFT, A SET-TEMP, A DELTA-PATTERN, A PLAN,
A SCHEDULE, A REFUELER.Q, A TUG.Q, A SHIP, AN AV9-PLAN,
A LOADER-Q, A LOAD-SET, AN ELEVATOR.Q, A SPOT-Q,
AN AC-ROY-SET, AN AC-PRE-ROY-SET, AND AN AC-NOT-RDY-SET

DEFINE SCHEDULE AS A SET RANKED BY LOW FLT.TIME DEFINE PLAN AS A SET RANKED BY LOW FLT.TIME

DEFINE AVS. PLAN AS A SET RANKED BY LOW FLT. TIME

DEFINE AC.ID, AC.TYPE, AC.LOCATION, DIST.TO.SHGRE, NUM.FLTS.

TUG. AC-LAUNCH-TIME, SPOTT, AC-DESTINATION, TYPES.AC. CYCLE.NUM. SPLIT. FLTS, AC1, AC2, AC3, AC4, AC5, AC6, AC7, AC3, F1, AC9, AC10, AC11, AC12, FLIGHT1, FLIGHT2, FLIGHT3, SPOT1, SPOT2, REFUELER, NUM.AV8.RDY, NUM.EMERGENCY.RECOVERIES. BONE.TCTAL, NUM.PRIGRITY.RECOVERIES, NUM.RECOVERIES, NUM.LAUNCHES, NUM-REPLACED-AC, NUM.CANCELLED.MISSIONS, NUM-OPEN-SPOTS, AC-SERVICE-FLAG AS INTEGER VARIABLES DEFINE AC.FUEL.STAT, AC.LOAD.STAT, AC.PRIDRITY, AC.OP.STAT, XBAR, SDEV, DELTA.UPDATE.TIME, HANGER.EQUIV, MAX.HANGER.EQUIV, AC.FLYING.TIME, LAST.LAUNCH.TIME, LAUNCH.DELAY, AC.DELTA.ARRIVAL.TIME, DELAY, NUM-AV9S.LOADED, TTARRIV.E, TTARRIV.H, TTARRIV.D, TTRECCVER, TTRESPOT, TTLOAD, TTFLY, TTUNLOAD, FLT. DELAY, LAST-RECOVERY.TIME, FLT.NUM, AC.TAKEOFF.TIME, HELD.MISSION.LENGTH, HELD.FLYING.TIME, HELD.RECOVER.TIME, AV8.MISSION.LENGTH, AV8.FLYING.TIME, AV8.RECOVER.TIME, AND DELTA AS REAL VARIABLES

DEFINE FILLER AS A TEXT VARIABLE

ACCUMULATE AVG.SPOT.Q AS THE MEAN, VAR.SPOT.Q AS THE VARIANCE, AND MAX.SPOT.Q AS THE MAXIMUM OF N.SPOT.Q ACCUMULATE AVG.REFUELER.Q AS THE MEAN, VAR.REFUELER.Q AS THE VARIANCE, AND MAX.REFUELER.Q AS THE MAXIMUM OF N.REFUELER.Q ACCUMULATE AVG. REFUELER AS THE MEAN, VAR. REFUELER AS THE VARIANCE, AND MAX.REFUELER AS THE MAXIMUM OF REFUELER ACCUMULATE AVG.DELTA AS THE MEAN, VAR.DELTA AS THE VARIANCE, AND MAX.DELTA AS THE MAXIMUM OF N. DELTA. PATTERN ACCUMULATE AVG.BONE.FWD AS THE MEAN, VAR.BONE.FWD AS THE VARIANCE, OWE-SHOR NO MUNIXAM SHT ZA GWE-SHOR XAM DA ACCUMULATE AVG.BONE.AFT AS THE MEAN, VAR.BONE.AFT AS THE VARIANCE, AND MAX.BONE.AFT AS THE MAXIMUM OF N.BONE.AFT ACCUMULATE AVG. BONE. FOR AS THE MEAN, VAR. BONE. FOR AS THE VARIANCE, LATOT. BUCH TO MUMIXAM BHT ZA TOT. BUNE. XAM DNA ACCUMULATE AVG. HANGER AS THE MEAN, VAR. HANGER AS THE VARIANCE, AND MAX. HANGER AS THE MAXIMUM OF N. HANGER. DECK ACCUMULATE AVG. TUG. Q AS THE MEAN, VAR. TUG. Q AS THE VARIANCE. C. DUT.N TE MUNIXAM SHT ZA P.DUT.XAM GNA ACCUMULATE AVG.TUG AS THE MEAN, VAR.TUG AS THE VARIANCE. AND MAX.TUG AS THE MAXIMUM OF TUG ACCUMULATE AVG.LOADER.Q AS THE MEAN. VAR.LOADER.Q AS THE VARIANCE, D. REDACEL . A D. MUMIXAM BHT SA D. REDACEL.XAM GAR ACCUMULATE AVG.LOADER AS THE MEAN, VAR.LOADER AS THE VARIANCE, TB2.CALL.N RD MUMIXAM BHT ZA REDALLXAM DAA ACCUMULATE AVG.ELEVATOR.Q AS THE MEAN, VAR.ELEVATOR.Q AS THE VARIANCE, AND MAX. ELEVATOR.Q AS THE MAXIMUM OF N.ELEVATOR.Q TALLY AVG.LAUNCH.DELAY AS THE MEAN, VAR. LAUNCH. DELAY AS THE VARIANCE, AND MAX.LAUNCH.DELAY AS THE MAXIMUM OF LAUNCH. DELAY TALLY AVG.HELD.FLYING.TIME AS THE MEAN, VAR.HELD.FLYING.TIME AS THE VARIANCE, MIN-HELD-FLYING-TIME AS THE MINIMUM, AND MAX.HELD.FLYING.TIME AS THE MAXIMUM OF HELD.FLYING.TIME TALLY AVG.AV8.FLYING.TIME AS THE MEAN, VAR.AV9.FLYING.TIME AS THE VARIANCE, MIN.AVS.FLYING.TIME AS THE MINIMUM, AND MAX.AV8.FLYING.TIME AS THE MAXIMUM OF AV8.FLYING.TIME TALLY AVG.HELD. MISSION. LENGTH AS THE MEAN, VAR. HELD. MISSION. LENGTH AS THE VARIANCE, MIN. HELD. MISSION. LENGTH AS THE

MINIMUM. AND MAX.HELD.MISSIGN.LENGTH 45 THE

MAXIMUM OF HELD.MISSIDN.LENGTH TALLY AVG.AV8.MISSION.LENGTH AS THE MEAN, VAR.AV8.MISSION.LENGTH AS THE VARIANCE, MIN.AV8. MISSION. LENGTH AS THE MINIMUM. AND MAX.AV8.MISSION.LENGTH AS THE MAXIMUM OF AV8.MISSION.LENGTH AVG. HELO. RECOVER. TIME AS THE MEAN, VAR. HELO. RECOVER. TIME TALLY AS THE VARIANCE, MIN. HELD. RECOVER. TIME AS THE MINIMUM, AND MAX.HELO.RECOVER.TIME AS THE MAXIMUM OF HELO.RECOVER.TIME AVG.AV8.RECOVER.TIME AS THE MEAN, VAR.AV8.RECOVER.TIME TALLY AS THE VARIANCE, MIN. 4VS. RECOVER. TIME AS THE MINIMUM, AND MAX.AVB.RECOVER.TIME AS THE MAXIMUM OF AVB.RECOVER.TIME AVG.TTLOAD AS THE MEAN, VAR.TTLOAD AS THE TALLY VARIANCE, MIN.TTLDAD AS THE MINIMUM, AND MAX.TTLOAD AS THE MAXIMUM OF TTLOAD AVG.TTRESPOT AS THE MEAN, VAR.TTRESPOT AS THE TALLY VARIANCE, MIN. TTRESPOT AS THE MINIMUM, AND MAX.TTRESPOT AS THE MAXIMUM OF TTRESPOT TALLY AVG.TTRECOVER AS THE MEAN, VAR.TTRECOVER AS THE VARIANCE, MIN. TTRECOVER AS THE MINIMUM, AND MAX.TTRECOVER AS THE MAXIMUM OF TTRECOVER AVG.TTARRIV.E AS THE MEAN, VAR.TTARRIV.E AS THE TALLY VARIANCE, MIN. TTARRIV. E AS THE MINIMUM, AND MAX.TTARRIV.E AS THE MAXIMUM OF TTARRIV.E AVG.TTARRIV.D AS THE MEAN, VAR.TTARRIV.D AS THE TALLY VARIANCE, MIN.TTARRIV.D AS THE MINIMUM, AND MAX.TTARRIV.D AS THE MAXIMUM OF TTARRIV.D AVG.TTARRIV.H AS THE MEAN, VAR.TTARRIV.H AS THE VARIANCE, MIN.TTARRIV.H AS THE MINIMUM, AND TALLY MAX.TTARRIV.H AS THE MAXIMUM OF TTARRIV.H AVG.TTUNLDAD AS THE MEAN, VAR.TTUNLDAD AS THE TALLY VARIANCE, MIN.TTUNLOAD AS THE MINIMUM, AND CACLINUTT TO MUMIXAM SHT ZA GACLINUTT.XAM END

MAIN

LET BETWEEN.V = 'TRACE' RESERVE SPGT AS 12 USE 3 FOR INPUT READ CYCLE. NUM FOR I = 1 TO 9, DO READ FILLER, SEED. V(I) USE 1 FOR INPUT OPEN 2 FOR DUTPUT USE 2 FOR DUTPUT PRINT 1 LINE WITH CYCLE.NUM THUS 会会 FOR I = 1 TO 9, DO PRINT 1 LINE WITH I, SEED. V(I) THUS SEED # = *********** LOOP ADD 1 TO CYCLE.NUM READ MAX.HANGER.EQUIV PRINT 1 LINE WITH MAX.HANGER. EQUIV THUS HANGER IS CAPABLE OF SLASHING ** CH-46 EQUIVALENTS READ DIST.TO.SHORE PRINT 1 LINE WITH DIST.TO.SHORE THUS DISTANCE TO SHORE: **** METERS READ TYPES.AC PRINT 1 LINE WITH TYPES.AC THUS TYPES.AC = ** RESERVE TYPE.AC AS TYPES.AC RESERVE SPEED.AC AS TYPES.AC RESERVE FUELCAP.AC AS TYPES.AC RESERVE FUELUSE.AC AS TYPES.AC RESERVE TTREFUEL.AC AS TYPES.AC RESERVE TTLDAD.AC AS TYPES.AC RESERVE S.TTLOAD.AC AS TYPES.AC RESERVE TTRESPOT.AC AS TYPES.AC RESERVE S.TTRESPOT.AC AS TYPES.AC RESERVE TTRECOVER.AC AS TYPES.AC RESERVE S.TTRECOVER.AC AS TYPES.AC RESERVE TTARRIV.E.AC AS TYPES.AC RESERVE S.TTARRIV.E.AC AS TYPES.AC RESERVE EMERGENCY.STAT.AC AS TYPES.AC RESERVE PRIDRITY.STAT.AC AS TYPES.AC RESERVE TTUNLDAD.AC AS TYPES.AC RESERVE SPOT.AC AS TYPES.AC BY 8 RESERVE NUM. LAUNCHES. AC AS TYPES. AC

READ TYPE.AC(I), SPEED.AC(I), FUELCAP.AC(I), FUELUSE.AC(I),

S.TTRECEVER.AC(I), TTRESPOT.AC(I), S.TTRESPOT.AC(I), TTARRIV.E.AC(I), S.TTARRIV.E.AC(I), EMERGENCY.STAT.AC(I),

PRIBRITY.STAT.AC(I), TTUNLDAD.AC(I), SPBT.AC(I,1),

TTREFUEL.AC(I), TTLUAD.AC(I), S.TTLUAD.AC(I), TTRECOVER.AC(I),

RESERVE HISTO-LAUNCHES AS TYPES-AC BY 50

FOR I = 1 TO TYPES.AC, OG

```
SPOT.AC(I,2), SPOT.AC(I,3), SPOT.AC(I,4), SPOT.AC(I,5),
          SPOT.AC(I,6), SPOT.AC(I,7), SPOT.AC(I,8)
. .
       PRINT 1 LINE WITH
. .
            TYPE.AC(I), SPEED.AC(I), FUELCAP.AC(I), FUELUSE.AC(I),
            TTREFUEL.AC(I), TTLOAD.AC(I), S.TTLOAD.AC(I), TTRECOVER.AC(I),
. .
            S.TTRECOVER.AC(I), TTRESPOT.AC(I), S.TTRESPOT.AC(I),
. .
. .
            TTARRIV.E.AC(I). S.TTARRIV.E.AC(I), EMERGENCY.STAT.AC(I).
            PRIDRITY.STAT.AC(I), TTUNEDAD.AC(I), SPJT.AC(I,1),
. .
. .
            SPOT.AC(I,2), SPOT.AC(I,3), SPOT.AC(I,4), SPOT.AC(I,5),
            SPOT.AC(I,6), SPOT.AC(I,7), SPOT.AC(I,8)
. .
            ** *.* ** *.* *.* **.*
                                         * * * * * * * *
  LOGP
  READ N. ACE
  PRINT 1 LINE WITH N. ACE THUS
       NUM AC : **
  RESERVE ETA AS N.ACE
  RESERVE INDEX AS N.ACE
  CREATE EVERY ACE
  FOR EACH ACE, DO
     READ AC.ID(ACE), AC.LOCATION(ACE), AC.FUEL.STAT(ACE),
          AC.LOAD.STAT(ACE), AC.DP.STAT(ACE), AND AC.TYPECACE)
     PRINT I LINE WITH AC.ID(ACE), AC.LOCATION(ACE), AC.FUEL.STAT(ACE),
           AC.LOAD.STAT(ACE), AC.OP.STAT(ACE), AND AC.TYPE(ACE) THUS
       ID: ## LGC: # FUEL: #.## LJAD: #.## OP: #.## TYPE: ##
     LET AC.FLYING.TIME(ACE) = (AC.FUEL.STAT(ACE)/FUELUSE.AC(AC.TYPE(ACE)))
                             * 60.
     IF AC.LOCATION(ACE) <= 6
           SPOT(AC.LOCATION(ACE)) = AC.ID(ACE)
     ELSE
       IF AC.LOCATION(ACE) = 7
           FILE ACE IN BONE.FWD
        AL WAYS
        IF AC.LOCATION(ACE) = 8
           FILE ACE IN BUNE.AFT
        ALHAYS
        IF AC.LOCATION(ACE) = 9
           LET AC.DESTINATION(ACE) = 9
           LET AC.PRIDRITY(ACE) = 1 - (AC.FUEL.STAT(ACE) * .2)
           FILE ACE IN DELTA.PATTERN
           FILE THIS ACE IN SPOT-Q
        AL JAYS
        IF AC.LOCATION(ACE) = 12
           FILE ACE IN HANGER-DECK
           IF AC.TYPE(ACE) = 2
              ADD 1.5 TO HANGER-EQUIV
              ADD 1 TO HANGER-EQUIV
           ALWAYS
        ALHAYS
     ALWAYS
     LET AC.LAUNCH.TIME(ACE) = 9999
     LET AC.SERVICE.FLAG(ACE) = 0
     FILE THIS ACE IN THE SHIP
  LOOP
  READ NUM. FLTS
  LET SPLIT.FLTS = 0
  RESERVE F AS (NUM.FLTS + 100)
  RESERVE FLTARRAY AS (NUM. FLTS + 100) BY 6
  RESERVE FLT.RECGRD AS NUM.FLTS BY 10 BY 2
```

```
PRINT 1 LINE WITH NUM-FLTS THUS
    * SCHEDULED FLIGHTS = **
  FOR I = 1 TO NUM.FLTS, DO
     CREATE A FLIGHTE CALLED F(I)
     LET FLT. NUM(F(I)) = I
     READ FLT.TIME(F(I)), FLT.AC.TYPE(F(I)), FLT.AC.NUM(F(I))
       PRINT 1 LINE WITH I, FLT. TIME(F(I)), FLT. AC. TYPE(F(I)),
                         FLT.AC.NUM(F(I))
       THU S
         I : ** FLIGHT.TIME : ****
                                    AC.TYPE : ** *4C : **
     LET FLT.RECORD(I,1,1) = FLT.TIME(F(I))
     LET FLT.RECORD(I,1,2) = FLT.AC.NUM(F(I)) + 1
     FOR J = I TO FLT.AC.NUM(F(I)), DO
        READ SPOTT
        FOR EACH ACE IN THE SHIP.
           WITH AC.ID(ACE) = SPOTT
        FIND THE FIRST CASE
        LET FLT.RECORD(I,J+1,1) = SPOTT
        IF AC.LAUNCH.TIME(ACE) = 9999
           LET AC.LAUNCH.TIME(ACE) = FLT.TIME(F(I))
           IF ((AC.TYPE(ACE) = 3) AND (AC.LOCATION(ACE) = 12))
              FILE ACE IN ELEVATOR.Q
              LET AC.DESTINATION(ACE) = 8
           ALWAYS
        AL HAYS
        LET FLTARRAY(I,J) = SPOTT
     LOGP
     FILE F(I) IN SCHEDULE
  LET NUM. JPEN. SPETS = 0
  FOR I = 1 TO 6, 00
     IF SPOT(I) = 0
        STD92.M39E.MUM DT 1 004
     ALWAYS
  LOOP
  PRINT 1 LINE WITH NUM-OPEN-SPOTS THUS
NUM. OPEN. SPOTS = ++
  REMOVE FIRST FLIGHTE FROM SCHEDULE
  IF (FLT.TIME(FLIGHTE) - TIME.V) > 40
     SCHEDULE A DECK.DECISION GIVING FLIGHTE IN
                                (FLT.TIME(FLIGHTE)-TIME.V-40) MINUTES
     SCHEDULE A DECK-DECISION GIVING FLIGHTE NOW
  ALJAYS
  FILE FLIGHTE IN SCHEDULE
  READ STOP.SIM.TIME
  SCHEDULE A STOP-SIMULATION IN STOP-SIM-TIME MINUTES
  LET LAST.RECOVERY.TIME = 0
  LET LAST.LAUNCH.TIME = 0
IF N.DELTA.PATTERN > 0
   SCHEDULE A DELTA.UPDATE.CHK IN 5 MINUTES
ALWAYS
  START SIMULATION
END
```

```
EVENT AC. LAUNCHED GIVEN AC, T.FLT.NUM
DEFINE AC. T. FLT. NUM AS INTEGER VARIABLES
 PRINT 1 LINE WITH AC.ID(AC).AC.FUEL.STAT(AC).AC.LCAO.STAT(AC).
                  AC. OP. STAT(AC) THUS
                     AND LOAD +. ** HAS DP. STAT +. **
AC ** WITH FUEL *. **
     SET THE ACLIAUNCHED VARIABLES AND SCHEDULE A DELTA ARRIVAL.
IF AC.LOCATION(AC) < 9
  IF T.FLT.NUM = 0
    FOR EACH FLIGHTE IN PLAN
        FOR EACH ACE IN FLT. WAVE(FLIGHTE)
            WITH ACE = AC
    FIND THE FIRST CASE
    IF FOUND
       LET T.FLT.NUM = INT.F(FLT.NUM(FLIGHTE))
    ELSE
       PRINT 1 LINE THUS
       ## ERROR ## FLIGHT NOT FOUND
    ALWAYS
  ALHAYS
  IF SPOT(AC.LOCATION(AC)) = AC.IO(AC)
    LET SPOT(AC.LOCATION(AC)) = 0
    ADD 1 TO NUM. OPEN. SPOTS
    PRINT 1 LINE THUS
THIS SPOT WAS CLEARED FOR AN EMERGENCY RECOVERY
  ALJAYS
  PRINT 1 LINE WITH NUM. OPEN. SPOTS THUS
#QPEN SPOTS = **
  LET AC. TAKEOFF. TIME(AC) = TIME. V
  IF TIME. V > LAST.LAUNCH.TIME
    LET LAST.LAUNCH.TIME = TIME.V
  ALAAYS
  ADD 1 TO NUM-LAUNCHES
  LET LAUNCH. DELAY = TIME. V - AC. LAUNCH.TIME(AC)
PPINT 1 LINE WITH AC. ID(AC), AC. LOCATION (AC), LAUNCH . DELAY THUS
      AC ** LAUNCHES FROM ** WITH DELAY ***. **
  LET AC.LOAD.STAT(AC) = 9
  LET AC.RECOVERY.TIME(AC) = 0
  LET AC.LOCATION(AC) = 10 . 4C IS IN FLIGHT
  LET AC.DESTINATION(AC) = 9
  LET TTPLY= (((DIST.TD.SHORE / SPEED.AC(AC.TYPE(AC))) / 60) * 2)
  LET TTUNEDAD = (((BETA.F(1.5.3.0,6)) + (CTTUNEDAD.AC(AC.TYPE(AC)))+2.))
              + (TTUNLOAD.AC(AC.TYPE(AC))) / 3.
  LET ETA(AC.ID(AC)) = TIME.V + TTFLY + TTUNLDAD
  IF AC.TYPE(AC) <> 3
     DAGUNUTY + YELD. MISSION.LENGTH = TTFLY + TTUNLDAD
  ELSE ""AC IS AVE
     LET AV8.MISSION.LENGTH = TTFLY + TTUNLOAD
```

ALJAYS

```
LET AC.FUEL.STAT(AC) = (AC.FUEL.STAT(AC) - ((:.15) +
                                                             ** FUEL CONSUMPTION
                      (FUELUSE.AC(AC.TYPE(AC))+(ETA(AC.ID(AC))+TIME.V)/60))) '
  LET AC.FLYING.TIME(AC) =(AC.FUEL.STAT(AC) / FUELUSE.AC(AC.TYPE(AC))) + 60.
  LET AC.PRIORITY(AC) = 1 - AC.FUEL.STAT(AC) + .2
PRINT 1 LINE WITH AC.ID(AC), ETA(AC.ID(AC)), AC.PRIDRITY(AC),
                  AC.FLYING.TIME(AC) THUS
AC ** WILL ARRIVE TO DELTA AT ** WITH PRIORITY *.** AND FLYING.TIME ***.*
  SCHEDULE A DELTALARRIVAL GIVING AC IN (ETA(AC.ID(AC))-TIME.V) MINUTES
  ADD 1 TO NUM.LAUNCHES.AC(AC.TYPE(AC))
  LET HISTO-LAUNCHES(AC-TYPECAC), NUM-LAUNCHES.AC(AC-TYPECAC))) = TIME.V
  FOR I = 1 TO FLT.RECORD(T.FLT.NUM.1.2)
      with flt. RECORD(T.flt. NUM, I, 1) = AC. ID(AC)
  FIND THE FIRST CASE
  IF NONE
     ADD 1 TO FLT.RECORD(T.FLT.NUM,1,2)
    I IS ALREADY INCREMENTED FROM THE FOR LOOP..
     LET FLT.RECORD(T.FLT.NUM,I,1) = AC.ID(AC)
  ALWAYS
  LET FLT. RECORD(T.FLT. NUM, I, 2) = TIME.V
  PRINT 1 LINE WITH FLT.RECORD(T.FLT.NUM.1,1),FLT.RECORD(T.FLT.NUM,1,2),
               FLT.RECORD(T.FLT.NUM,I,1), FLT.RECGRO(T.FLT.NUM,I,2) THUS
FLIGHT AT **** WITH ** AC LAUNCHES AC ** AT ****.*
  FOR EACH FLIGHTE IN THE SCHEDULE
     FOR I = 1 TO FLT.AC.NUM(FLIGHTE)
        WITH AC.ID(AC) = FLTARRAY(FLT.NUM(FLIGHTE),I)
  FIND THE FIRST CASE
  IF FOUND
     LET AC.LAUNCH.TIME(AC) = FLT.TIME(FLIGHTE)
    LET AC.LAUNCH.TIME(AC) = 3999
  ALWAYS
   PRINT 1 LINE WITH ACLIDIACO THUS
   AC ** HAS ALREADY LAUNCHED .
ALWAYS
RETURN
END
```

```
EVENT AC.LOADED GIVEN AC
DEFINE AC, L. TIME AS INTEGER VARIABLES
 PRINT 1 LINE WITH AC.ID(AC).AC.FUEL.STAT(AC), AC.LOAD.STAT(AC).
                  AC. OP. STATCAC) THUS
                    AND LOAD +. ++ HAS OP.STAT +. +++
AC ** JITH FUEL *.**
LET AC.SERVICE.FLAG(AC) = 0
IF AC.LOAD.STAT(AC) < 1
 LET AC. UP.STAT(AC) = AC. UP.STAT(AC) + .2*(1.7 - AC.LOAD.STAT(AC))
 LET AC.LOAD.STAT(AC) = 1.0
 IF AC.TYPE(AC) = 3
    REMOVE AC FROM LOAD.SET
    IF N.LOAD.SET < 2
       IF N.LOADER.Q > 0
          REMOVE FIRST ACE FROM LOADER-Q
          LET XBAR = TTLOAD.AC(AC.TYPE(ACE))
          LET SDEY = S.TTLOAD.AC(AC.TYPE(ACE))
          LET TTLDAD = NORMAL.F(XBAR, SDEV, 3)
              + (NUM.AVBS.LOADED / 4.)
          ADD 1 TO NUM.AV85.LOADED
          SCHEDULE AN AC.LOADED GIVING ACE
             IN TTLOAD MINUTES
          LET AC.SERVICE.FLAG(ACE) = 1
          FILE ACE IN LOAD.SET
          PRINT 1 LINE WITH N.LOAD.SET THUS
   N.LDAD.SET= **
       ALWAYS
    ALWAYS
  ALHAYS
 ELSE
 PRINT 1 LINE THUS
THIS AC LOADED PREVIOUSLY
 ALMAYS
IF (AC.OP.STAT(AC) < 1.01) AND (AC.OP.STAT(AC) > .99)
  LET AC. JP.STAT(AC) = 1.00
AL WAYS
  IF AC.OP.STAT(AC) > 1
    PRINT 1 LINE THUS
## ERROR##
          i < TATZ.qC.SA
  ALHATS
  IF AC.OP.STAT(AC) < 1
     PRINT 1 LINE THUS
## ERROR##
         AC.DP.STAT < 1
  ALHAYS
  PRINT 1 LINE WITH ACOUP.STATCACE THUS
  AC.OP.STAT(AC): #. ###
  PRINT 1 LINE WITH TIME. V. N. PLAN THUS
  AT **** ** THERE ARE ** FLIGHTS IN THE PLAN
 IF AC.LAUNCH.TIME(AC) <= (TIME.V + 43)
    FOR EACH FLIGHTE IN THE PLAN.
```

```
FOR EACH ACE IN FLT. WAVE(FLIGHTE)
           WITH AC.ID(AC) = AC.ID(ACE)
   FIND THE FIRST CASE
   IF FOUND
      PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS
      AC.ID(AC): ** AC.ID(ACE): **
      ADD 1 TO FLT.AC.RDY(FLIGHTE)
      PRINT 1 LINE WITH FLT.AC. RDY (FLIGHTE) THUS
       #RDY AC IN FLIGHT = **
       IF AC.TYPE(ACE) <= 2 .. HELD READY TO LAUNCH ... CHECK LAUNCH TIME
          IF FLT.AC.RDY(FLIGHTE) = N.FLT.WAVE(FLIGHTE)
             SCHEDULE A FLIGHT-LAUNCH GIVING FLIGHTE IN .5 MINUTES
             PRINT 1 LINE THUS
             FLIGHT.LAUNCH HAS BEEN SCHEDULED
          ALHAYS
       ELSE ..
                AVE READY TO LAUNCH/RESPET.....
          IN BOTH CASES, MUST ALSO CHECK OP-STAT, LOCATION, MAVE? IF (FLT.TIME(FLIGHTE) - TIME.V) <= 40
             IF FLT.AC.RDY(FLIGHTE) = N.FLT.WAVE(FLIGHTE)
                FOR EACH ACE IN FLT. WAVE(FLIGHTE), OC
                     FILE ACE IN SPOT-Q
                     PRINT 1 LINE WITH ACE THUS
                     AC ** FILED IN SPOT-Q
                LOOP
                SCHEDULE A SPOT-OPEN NOW
                                           **THIS CAUSES THESE AVES TO BE CONS
             AL WAYS
          ALHAYS
       ALWAYS
   ELSE
       PRINT 1 LINE WITH TIME. V, EVENT. V, AC. ID(AC) THUS
## ERROR## 1:: TIME = ####.## EYENT = ## AC.ID(AC) = ##
   ALHAYS
ALHAYS
RETURN
END
```

```
********************************
EVENT AC. REFUELED GIVEN AC
DEFINE AC AS AN INTEGER VARIABLE
 PRINT 1 LINE WITH AC.ID(AC).AC.FUEL.STAT(AC), 4C.LDAD.STAT(AC),
                   AC. CP. STAT(AC) THUS
AC ** WITH FUEL *.**
                     AND LOAD *. ** HAS OP.STAT *. **
LET AC.SERVICE.FLAG(AC) = 0
IF ((AC.FUEL.STAT(AC) < 1) AND (AC.LOCATION(AC) < 9))
   LET AC.OP.STAT(AC) = AC.OP.STAT(AC) + (.2) = (1.0 - AC.FUEL.STAT(AC))
   LET AC. FUEL.STAT(AC) = 1.0
   LET AC.FLYING.TIME(AC) = (AC.FUEL.STAT(AC) / FUELUSE.AC(AC.TYPE(AC)))
                           * 60 .
   IF AC. OP. STAT(AC) > 1
      PRINT 1 LINE THUS
##ERROR## AC.GP.STAT > 1
   AL WAYS
PRINT 1 LINE WITH AC-OP-STAT(AC).AC-FLYING.TIME(AC) THUS
  AC.OP.STAT(AC): #.## FLYING.TIME = ###.#
 IF AC.LAUNCH.TIME(AC) < (TIME.V + 40)
   IF AC.LOCATION(AC) < 7
      LET TTLOAD = 1.+ BETA.F(1.5,3.9,3)
                 * TTLDAD.AC(AC.TYPE(AC))
      IF (AC.LAUNCH.TIME(AC) - TIME.V) < 10
         SCHEDULE AN ACLUADED GIVING AC
             IN TTLOAD MINUTES
      FLS E
         SCHEDULE AN AC-LUADED GIVING AC AT
           (AC.LAUNCH.TIME(AC) - 10. + TTLGAD)
      ALWAYS
      LET AC.SERVICE.FLAG(AC) = 1
   ELSE
      IF AC.TYPE(AC) = 1
         REMOVE THIS AC FROM SONE.FWD
         FILE THIS AC IN BONE. FWD
      ELSE
         REMOVE THIS AC FROM BONE.AFT
         FILE THIS AC IN BONE.AFT
         IF AC.TYPE(AC) = 3
           IF M.LDAD.SET(AC) <> 1
            IF N.LDAD.SET < 2
               FILE AC IN LOAD.SET
               PRINT 1 LINE WITH N.LOAD.SET THUS
  N.LJAD.SET= **
               LET XBAR = TTLDAD.AC(AC.TYPE(AC))
               LET SDEV = S.TTLOAD.AC(AC.TYPE(AC))
               LET TTLOAD = NORMAL.F(XBAR, SDEV, 3)
                     + (NUM.AV8S.LCADED / 4.)
               ADD 1 TO NUM.AV8S.LOADED
               SCHEDULE AN AC.LOADED GIVING AC
                    IN TTLOAD MINUTES
               LET AC.SERVICE.FLAG(AC) = 1
            ELSE
               IF M.LJADER.Q(AC) <> 1
                  FILE AC IN LOADER.Q
               ALAAYS
```

```
ALWAYS
            ELSE
                PRINT 1 LINE THUS
AV8 IS ALREADY BEING LOADED
                LET AC.SERVICE.FLAG(AC) = 1
             ALHAYS
          ALHAYS
       ALWAYS
    ALHAYS
    IF (AC.TYPE(AC) < 3) AND (AC.DESTINATION(AC) < 7)
       IF TUG < 4
          LET TUG = TUG + 1
          LET X3AR = TTRESPOT.AC(AC.TYPE(AC))
          LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
          LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
          SCHEDULE AN AC. RESPOTTED GIVING AC IN TTRESPOT MINUTES
       ELSE
          FILE AC IN TUG-Q
PRINT 1 LINE WITH AC THUS
AC ** FILED IN TUG.Q
       ALWAYS
    ALWAYS
  ELSE
    IF AC.TYPE(AC) = 3
      IF M.LOAD.SET(AC) <> 1
         IF N.LOAD.SET < 2
            FILE AC IN LUAD.SET
             PRINT 1 LINE WITH N.LOAD.SET THUS
    N.LOAD.SET= ++
            LET XBAR = TTLOAD.AC(AC.TYPE(AC))
LET SDEV = S.TTLOAD.AC(AC.TYPE(AC))
            LET TTLOAD = NORMAL.F(XBAR, SDEV, 3)
                 + (NUM.AV8S.LOADED / 4.)
             ADD 1 TO NUM.AV8S.LOADED
             SCHEDULE AN AC-LOADED GIVING AC
                 IN TTLOAD MINUTES
            LET AC.SERVICE.FLAG(AC) = 1
         ELSE
             IF M.LOADER.Q(AC) <> 1
                FILE AC IN LOADER.9
             ALHAYS
         ALWAYS
      ELSE
PRINT 1 LINE THUS AV8 IS ALREADY BEING LOADED
         LET AC.SERVICE.FLAG(AC) = 1
      ALWAYS
    ALHAYS
  ALAAYS
 ELSE
    PRINT 1 LINE THUS
THIS AC HAS ALREADY BEEN REFUELED
 ALWAYS
  SUSTRACT 1 FROM REPUELER
  IF N.REFUELER.J. > 0
     REMOVE FIRST ACE FROM REPUBLER.Q
     ADD 1 TO REFUELER
     LET DELAY = NORMAL.F(1.,.25,+)
     SCHEDULE AN AC-REFUELED GIVING ACE
          IN ((1. - AC. FUEL. STAT(ACE)) #
```

```
TTREFUEL.AC(AC.TYPE(ACE))) + DELAY MINUTES
    LET AC.SERVICE.FLAG(ACE) = 1
    IF AC.TYPE(ACE) = 3
        IF M.LOAD.SET(ACE) <> 1
           IF N.LOAD.SET < 2
              FILE ACE IN LOAD.SET
              PRINT 1 LINE WITH N.LOAD.SET THUS
   ** = T32.CACL.N
              LET XBAR = TTLDAD.AC(AC.TYPE(ACE))
              LET SDEV = S.TTLDAD. AC(AC.TYPE(ACE))
              LET TTLOAD = NORMAL.F(XBAR, SDEV, 3)
                 + (NUM.AV85.LD40ED / 4.)
              ADD 1 TO NUM. AV85.LDADED
              SCHEDULE AN AC.LOADED GIVING ACE
                IN TTLOAD MINUTES
              LET AC.SERVICE.FLAG(ACE) = 1
           ELSE
              IF M.LOADER.Q(ACE) <> 1
                 FILE ACE IN LDADER.Q
              ALWAYS
           ALWAYS
        ELSE
           PRINT 1 LINE THUS
AV8 IS ALREADY BEING LOADED
          LET AC.SERVICE.FLAG(ACE) = 1
        ALWAYS
     ALWAYS
  ALMAYS
  RETURN
  END
```

```
EVENT AC.RECOVERED GIVEN AC
DEFINE AC, FLAG AS INTEGER VARIABLES
 PRINT 1 LINE WITH AC.ID(AC), AC.FUEL.STAT(AC), AC.LGAD.STAT(AC),
                  AC. OP. STAT(AC) THUS
AC ** WITH FUEL *.**
                     AND LOAD +. ** HAS OP.STAT +. **
 REMOVE THIS AC FROM DELTA.PATTERN
 ADD 1 TO NUM. RECOVERIES
 LET AC.RECOVERY.TIME(AC) = TIME.V
 IF AC.TAKEOFF.TIME(AC) > 0
    IF AC.TYPE(AC) <> 3
       LET HELD.FLYING.TIME = AC.RECTVERY.TIME(AC) - AC.TAKESFF.TIME(AC)
       LET HELO.RECOVER.YIME = AC.RECOVERY.TIME(AC)
                            - AC.DELTA.ARRIVAL.TIME(AC)
    ELSE
       LET AV8.FLYING.TIME = AC.RECOVERY.TIME(AC) - AC.TAKEOFF.TIME(AC)
       LET AV8.RECOVER.TIME = AC.RECOVERY.TIME(AC)
                           - AC.DELTA.ARRIVAL.TIME(AC)
    ALMAYS
 ALWAYS
 LET AC.LOCATION(AC) = AC.DESTINATION(AC)
 LET SPOT(AC.DESTINATION(AC)) = AC.ID(AC)
 LET AC.PRIDRITY(AC) = 0
 LET AC-SP-STAT(AC) = AC-SP-STAT(AC) - (-2)*(1. - AC-LSAG-STAT(AC))
                                    - (.2)*(1. - AC.FUEL.STAT(AC))
 LET FLAG = 0
 FOR I = 1 TO SPOT.AC(AC.TYPE(AC),7),
    WITH SPOT. AC(AC.TYPE(AC), I) = AC.LOCATION(AC)
  FIND THE FIRST CASE
  IF NONE
    LET FLAG = 1
  ALWAYS
 IF N.AV9.PLAN > 0
    REMOVE THE FIRST FLIGHTE FROM AV8.PLAN
    LET AV8.LAUNCH.TIME = FLT.TIME(FLIGHTE)
    FILE THIS FLIGHTE IN AV8.PLAN
 ELSE
    LET AVB. LAUNCH. TIME = 9999
 ALHAYS
 PRINT 1 LINE WITH AC.LAUNCH.TIME(AC), AC.LOCATION(AC), N.SPOT.Q.
                  NUM-OPEN-SPOTS, AVELLAUNCH. TIME THUS
TO TIMES $555
               L0C= **
                         N. SPOT. Q= **
                                        NUM. OPEN. SPOTS = ** AVB TO TIME = **
  IF (AC.LAUNCH.TIME(AC) > (40+TIME.V))
       OR ((AV8.LAUNCH.TIME < AC.LAUNCH.TIME(AC))
           AMD (AC.LOCATION(AC) <= 2)) OR (FLAG = 1)
   IF AC. TYPE(AC) = 1
      IF N-BONE-FWD < 5
         LET AC.DESTINATION(AC) = 7
         IF TUG < 4
            LET TUG = TUG + 1
            LET XBAR = TTRESPOT.AC(AC.TYPE(AC))
            LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
```

SINULATION AND ANALYSIS OF FLIGHT DECK OPERATIONS ON AN LHA(U) CENTER FOR NAVAL ANALYSES ALEXANDRIA VA MARINE CORPS OPERATIONS ANALYSIS GROUP S M GATES JUN 87 CNA-PP-456 N88814-87-C-8801 2/2 AD-A182 192 UNCLASSIFIED NL


```
LET TTRESPOT = NORMAL.F(XBAR, SOEV, 2)
             SCHEDULE A BONE.ARRIVAL GIVING AC IN TTRESPOT MINUTES
             FILE THIS AC IN TUG-Q
PRINT 1 LINE WITH AC THUS
AC ** FILED IN TUG-Q
          ALWAYS
          FILE AC IN BONE.FWD
PRINT 1 LINE WITH AC THUS
AC ** FILED IN SONE
              **N.BONE.FWD >= 5
       ELSE
          IF AC.LAUNCH.TIME(AC) < 9999
             LET AC.DESTINATION(AC) = 7
             IF TUG < 4
                LET TUG = TUG + 1
                LET XBAR = TTRESPOT.AC(AC.TYPE(AC))
                LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
                LET TTRESPOT = NORMAL. F(XBAR, SDEV, 2)
                SCHEDULE A BONE-ARRIVAL GIVING AC IN TTRESPOT MINUTES
             ELSE
                FILE THIS AC IN TUG-Q
PRINT 1 LINE WITH AC THUS
AC ** FILED IN TUG-Q
             AL WAYS
             FILE AC IN BONE.FWD
PRINT 1 LINE WITH AC THUS
AC ** FILED IN BONE
             REMOVE THE LAST ACE FROM BONE. FWD
             IF (AC.LAUNCH.TIME(ACE)=9999)
                LET AC.DESTINATION(ACE) = 12
                IF (SPDT(11) = 0) AND (HANGER.EQUIV < MAX.HANGER.EQUIV)</pre>
                   LET SPOT(11) = -AC.ID(ACE)
                   IF TUG < 4
                      ADD 1 TO TUG
                      LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                      LET SDEY = S.TTARRIV.E.AC(AC.TYPE(ACE))
                      LET TTARRIV.E = NORMAL.F(XBAR,SDEV,8)
                      SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                  IN TTARRIV.E MINUTES
                   ELSE
                      FILE ACE IN TUG.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
                   ALWAYS
                ELSE
                   IF M.ELEVATOR.Q(ACE) <> 1
                      FILE ACE IN ELEVATOR .Q
                   ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.2
                ALWAYS.
             ALWAYS
             FILE ACE IN BONE.FWO
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SONE
          ELSE
             PRINT 1 LINE WITH AC.ID(AC), AC.LOCATION(AC) THUS
     AC ** AT LOCATION ** CANNOT RESPOT TO FWO. BONE... S AC ALREADY THERE
             LET AC.DESTINATION(AC) = 12
             IF (SPOT(11) = 0) AND (HANGER.EQUIV < MAX.MANGER.EQUIV)
```

```
LET SPOT(11) = -AC-ID(AC)
                IF TUG < 4
                   ADD 1 TO TUG
                   LET XBAR - TTARRIV. E.AC(AC.TYPE(AC))
                   LET SDEV = S.TTARRIV.E.AC(AC.TYPE(AC))
                   LET TTARRIV.E = NORMAL.F(XBAR,SDEV,8)
                   SCHEDULE AN ELEVATOR.ARRIVAL GIVING AC
                             IN TTARRIV-E MINUTES
                ELSE
                   FILE AC IN TUG.Q
PRINT 1 LINE WITH AC THUS
AC ** FILED IN TUG-Q
                ALWAYS
             ELSE
                IF M. ELEVATOR.QCAC) <> 1
                   FILE THIS AC IN ELEVATOR-Q
                ALWAYS
PRINT 1 LINE WITH AC THUS
AC ** FILED IN ELEVATOR.Q
             AL WAYS
          ALHAYS
       ALWAYS
    ELSE
       IF N.BONE.AFT < 7
          LET AC.DESTINATION(AC) = 8
          IF AC.TYPE(AC) < 3
             IF TUG < 4
                LET TUG = TUG + 1
                LET XBAR - TTRESPOT.AC(AC.TYPE(AC))
                LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
                LET TTRESPOT = NORMAL. F(XBAR, SDEV, 2)
                 SCHEDULE A BONE.ARRIVAL GIVING AC
                          IN TTRESPOT MINUTES
             ELSE
                FILE THIS AC IN TUG. 2
PRINT 1 LINE WITH AC THUS
AC ** FILED IN TUG.Q
             AL WAYS
           ELSE
             LET XBAR = TTRESPOT-ACCAC.TYPECAC))
             LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
              LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
              SCHEDULE A BONE. ARRIVAL GIVING AC IN TTRESPOT/2 MINUTES
          ALWAYS
FILE AC IN BONE.AFT PRINT 1 LINE WITH AC THUS
AC ** FILED IN BONE
               " "N. BONE. AFT >=7
       ELSE
           IF AC.LAUNCH.TIME(AC) < 9999
              LET AC.DESTINATION(AC) = 8
              LET XBAR = TTRESPOT.AC(AC.TYPE(AC))
              LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
              LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
              IF AC-TYPE(AC) < 3
                 IF TUG < 4
                    LET TUG = TUG + 1
                    SCHEDULE A BONE. ARRIVAL GIVING AC
                              ZBTUNIM TCGZBTT NI
                 ELSE
                    FILE THIS AC IN TUG.C
```

```
PRINT 1 LINE WITH AC THUS
AC ** FILED IN TUG-Q
                ALWAYS
             ELSE .. AC IS AVE
                SCHEDULE A BONE.ARRIVAL GIVING AC
                         IN TTRESPOT MINUTES
             ALWAYS
PRINT 1 LINE WITH AC THUS
AC ** FILED IN SONE
             REPOVE THE LAST ACE FROM BONE.AFT
             IF (AC.LAUNCH.TIME(ACE)=9999)
                LET AC.DESTINATION(ACE) = 12
                IF (SPOT(11) = 0) AND (HANGER.EQUIV < MAX.HANGER.EQUIV)
                   LET SPOT(11) = -AC.ID(ACE)
                   IF TUG < 4
                      ADD 1 TO TUG
                      LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                      LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                      LET TTARRIV.E = NORMAL.F(XBAR,SDEV,8)
                       SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                               IN TTARRIV.E MINUTES
                   ELSE
                      FILE ACE IN TUG. Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
                   ALWAYS
                ELSE
                   IF M.ELEVATOR.Q(ACE) <> 1
                      FILE ACE IN ELEVATOR . Q
                   ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
                ALWAYS
             AL WAYS
             FILE ACE IN BONE.AFT
PRINT I LINE WITH ACE THUS
AC ** FILED IN SONE
          ELSE
             PRINT 1 LINE WITH AC.ID(AC), AC.LOCATION(AC) THUS
     AC ** AT LOCATION ** CANNOT RESPOT TO AFT. BONE ... T AC ALREADY THERE
             LET AC.DESTINATION(AC) = 12
             IF (SPOT(11) = 0) AND (HANGER.EQUIV < MAX.HANGER.EQUIV)
                 LET SPOT(11) = -AC.ID(AC)
                 IF TUG < 4
                    ADD 1 TO TUG
                   LET XBAR = TTARRIV.E.AC(AC.TYPE(AC))
                   LET SDEV = S.TTARRIV.E.AC(AC.TYPE(AC))
                   LET TTARRIV.E = MORMAL.F(XBAR,SDEV,S)
                    SCHEDULE AN ELEVATOR. ARRIVAL GIVING AC
                             IN TTARRIV.E MINUTES
                 ELSE
                   FILE AC IN TUG.Q
PRINT 1 LINE WITH AC THUS
AC ** FILED IN TUG.Q
              ELSE
                 IF M.ELEVATOR.Q(AC) <> 1
                    FILE AC IN ELEVATOR.3
```

ALWAYS

```
PRINT 1 LINE WITH AC THUS
AC ** FILED IN ELEVATOR.Q
             ALWAYS
          ALHAYS
        ALHAYS
     ALWAYS
     PRINT 1 LINE WITH AC.ID(AC), AC.LOCATION(AC), AC.DESTINATION(AC),
                       TUG, N. TUG.Q, N. ELEVATOR.Q THUS
AC ** IS AT **
               WITH DEST ** TUG= ** N.TUG.Q= ** N.ELEVATOR.Q= **
  ELSE
     PRINT 1 LINE WITH REFUELER, N. REFUELER. Q THUS
REFUELER= **
               N.REFUELER.Q = **
     IF AC.TYPE(AC) < 3
        LET AC. DESTINATION(AC) = 10
        IF REFUELER < 4
           ADD 1 TO REPUELER .
           LET DELAY = NORMAL.F(1.,.25,4)
           SCHEDULE AN AC.REPUELED GIVING AC " FOR HELDS ONLY*****
            IN ((1. - AC.FUEL.STAT(AC)) *
            TTREFUEL.AC(AC.TYPE(AC))) + DELAY MINUTES
           LET AC.SERVICE.FLAG(AC) = 1
        ELSE
          FILE THIS AC IN REPUBLER.Q
        ALWAYS
     ELSE
        LET AC. DESTINATION(AC) = 8
        LET XBAR = TTRESPOT.AC(AC.TYPE(AC))
        LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
        LET TTRESPOT = NORMAL.F(X3AR,SDEV,2)
        SCHEDULE A BONE.ARRIVAL GIVING AC IN TTRESPOT/2 MINUTES **AV8S
        FILE AC IN BONE.AFT
PRINT 1 LINE WITH AC THUS
AC ** FILED IN BONE
     ALWAYS
  ALHAYS
  RETURN
  END
```

```
*****************************
EVENT AC.RESPOTTED GIVEN AC
* * ****************************
 DEFINE AC, OPEN.SPOT, AND COUNTER AS INTEGER VARIABLES
 PRINT 1 LINE WITH AC.ID(AC), AC. FUEL. STAT(AC), AC.L9AD. STAT(AC),
                   AC-OP-STATCAC) THUS
AC ** WITH FUEL *. **
                     AND LOAD +.++ HAS OP.STAT +.++
   A TUG BECOMES AVAILABLE.
IF AC.TYPE(AC) < 3
   LET TUG = TUG - 1
   IF AC.LOCATION(AC) < 7
      LET SPOT(AC.LOCATION(AC)) = 0
      SCHEDULE A SPOT-OPEN NOW.
    ALWAYS
  ALWAYS
     REMOVE THIS RESPOTTED AIRCRAFT FROM THE BONE IF IT WAS RESPOTTED FROM
   THAT AREA.
 IF AC.LOCATION(AC) = 7
   REMOVE THIS AC FROM THE BONE. FWO
  ALHAYS
 IF AC.LOCATION(AC) = 8
    REMOVE THIS AC FROM THE BONE.AFT
  ALWAYS
    LET AC.LOCATION(AC) = AC.DESTINATION(AC)
    LET SPOT(AC.LOCATION(AC)) = AC.ID(AC)
     LET AC.DESTINATION(AC) = 10
     IF AC.TYPE(AC) < 3
       IF AC.FUEL.STAT(AC) = 1
          LET TTLOAD = 1.+ BETA.F(1.5,3.0,3)
               * TTLDAD.AC(AC.TYPE(AC))
          IF AC.LAUNCH.TIME(AC) - TIME:V < 10
             SCHEDULE AN AC.LOADED GIVING AC
               IN TTLGAD MINUTES
          ELSE
             SCHEDULE AN ACLUADED GIVING AC AT
               ((AC.LAUNCH.TIME(AC) - 10. + TTLOAD))
           ALWAYS
          LET AC.SERVICE.FLAG(AC) = 1
       ELSE
          IF REFUELER < 4
             ADD 1 TO REFUELER
             LET DELAY = NORMAL.F(1.,.25,4)
             SCHEDULE AN AC. REFUELED GIVING AC IN
               ((1. - AC.FUEL.STAT(AC)) +
               TTREPUEL.AC(AC.TYPE(AC))) + DELAY MINUTES
             LET AC.SERVICE.FLAG(AC) = 1
           ELSE
             FILE THIS AC IN REPUELER-Q
           ALWAYS
        ALWAYS
      DETERMINE IF THE NOW AVAILABLE TUG CAN BE USED BY WAITING AIRCRAFT IN
   THE TUG QUEUE.
```

```
IF Natugag > C AND TUG < 4
           REMOVE FIRST ACE FROM TUG.Q
           PRINT 1 LINE WITH ACE THUS
AC ** REMOVED FROM TUG.Q
           LET TUG = TUG + 1
           IF AC.DESTINATION(ACE) = 7 OR AC.DESTINATION(ACE) = 8
              LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
              LET SDEV = S.TTRESPUT.AC(AC.TYPE(ACE))
              LET TTRESPOT = NORMAL.F(XBAR.SDEV.2)
              SCHEDULE A BONE. ARRIVAL GIVING ACE IN TTRESPOT MINUTES
              IF AC.DESTINATION(ACE) < 7
               . LET XBAR = TTRESPOT.AC(AC.TYPE(AGE))
                 LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
                 LET TTRESPOT = NORMAL.F(XBAR,SDEV,2)
                 SCHEDULE AN AC. RESPOTTED GIVING ACE IN TTRESPOT MINUTES
              ELSE
                 LET XBAR = TTARRIV.E.AG(AC.TYPE(ACE))
                 LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = NORMAL.F(XBAR, SOEV, 8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                            IN TTARRIV.E MINUTES
              ALWAYS
           ALWAYS
           IF (AC.LOCATION(ACE) = 11)
              LET SPOT(11) = 0
           ALWAYS
        ALHAYS
      IF ((SPOT(11) = 0) AND (N. ELEVATOR.Q > 0))
           REMOVE THE FIRST ACE FROM ELEVATOR.Q
           IF AC.DESTINATION(ACE) > 0
              IF AC.DESTINATION(ACE) = 12
                 IF CHANGER. EQUIV + 1) < (MAX. HANGER. EQUIV)
                    LET SPOT(11) = -AC.ID(ACE)
                    IF TUG < 4
                       ADO 1 TO TUG
                       LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                       LET SOEY = S.TTARRIV.E.AC(AC.TYPE(ACE))
                       LET TTARRIV.E = NORMAL.F(XBAR, SOEV, 8)
                       SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                    TTARRIV.E MINUTES
                                 IN
                     ELSE
                       FILE ACE IN TUG.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
                 ELSE
                    IF M.ELEVATOR. QCACE) <> 1
                       FILE ACE IN SLEVATOR .Q
                    ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SLEVATOR.Q
                    FOR EACH ACE IN ELEVATOR.Q
                        WITH AC.DESTINATION(ACE) < 12
                    FIND THE FIRST CASE
                     IF FOUND
                        REMOVE THIS ACE FROM ELEVATURED
                        LET SPOT(11) = -4C.IO(4CE)
```

```
LET XBAR = TTARRIV. E. ACCAC. TYPE(ACE))
                    LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
LET TTARRIV.E = NORMAL.F(XBAR,SDEV,8)
                    SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                             'IN TTARRIV.E MINUTES
                 ALWAYS
              ALWAYS
              LET SPOT(11) = -AC.ID(ACE)
              LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
              LET SDEY = S.TTARRIV.E.AC(AC.TYPE(ACE))
              LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
              SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                        . IN TTARRIV.E MINUTES
          IF AC.TYPE(ACE) = 1
              IF N.BONE.FWD < 5
                 FILE ACE IN BONE. FWO
                 LET AC.DESTINATION(ACE) = 7
                 LET SPOT(11) = -AC.ID(ACE)
LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                 LET SDEY = S.TTARRIV.E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = MORMAL.F(XBAR.SDEV.8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                            IN TTARRIV.E MINUTES
              ALWAYS
              IF N.SONE.AFT < 7
                 FILE ACE IN BONE.AFT
                 LET AC.DESTINATION(ACE) = 8
                 LET SPOT(11) = -AC.ID(ACE)
                 LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                 LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = NORMAL.F(XBAR.SDEV.8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                            IN TTARRIV.E MINUTES
              ALWAYS
 ELSE "CHECK IF AVE FLIGHT RDY TO LAUNCH...SCHED LAUNCH IF RDY
    IF AC.LOCATION(AC) <= 2
        PRINT 1 LINE WITH AC.ID(AC), TIME.V, AC.LOCATION(AC) THUS
        ** TC 9 AND TO LAUNCH AT *** FROM SPOT **
        FOR EACH FLIGHTE IN AV8.PLAN
           WITH FLT.TIME(FLIGHTE) = AC.LAUNCH.TIME(AC)
        FIND THE FIRST CASE
           YOR.SYA.RUM ET 1 DOA
           PRINT 1 LINE WITH FLT.TIME(FLIGHTE), NUM. AV8. RDY THUS
·AV8 FLIGHT SCHED TO LAUNCH AT *** HAS ** AV8"S RDY DN SPOTS
           IF NUM. AVS. RDY = 2
              LET NUM.AVS.RDY = 0
              SCHEDULE A FLIGHT. LAUNCH GIVING FLIGHTE IN
                        UNIFORM.F(.1,.5,9) MINUTES
              PRINT 1 LINE WITH FLT.TIME(FLIGHTE) THUS
```

ELSE

ALWAYS

ELSE

ALWAYS ALWAYS

IF FOUND

ALWAYS

ELSE

AVS FLIGHT SCHE TO LAUNCH AT *** MAS BEEN SENT TO FLIGHT.LAUNCH

FOR EACH ACE IN FLT. WAVE(FLIGHTE), DO

```
IF M.SPOT.QCACE) = 1
                     REMOVE THIS ACE FROM SPOT-Q
                  ALWAYS
               LOGP
            ALWAYS
         ELSE
            PRINT 1 LINE WITH AC.ID(AC) THUS
            **ERROR IN AC.RESPOTTED WITH AC **
         ALWAYS
      ELSE ** NEED SOME OTHER ACTION FOR RESPOTTED AV8
         PRINT'I LINE WITH AC-ID(AC), AC-LOCATION (AC) THUS
   ## ERROR AC ** (AV8) RESPOTTED TO **
                                         ... NEED SOME ACTION###
      ALWAYS
   ALWAYS
RETURN
END
```

<mark>and a company to the property of the company of th</mark>

```
EVENT BONE. ARRIVAL GIVEN AC
DEFINE AC AS INTEGER VARIABLES
 PRINT 1 LINE WITH AC.ID(AC), AC.FUEL.STAT(AC), AC.LOAD.STAT(AC),
                  AC. OP. STAT(AC) THUS
                     AND LOAD +.++ HAS OP.STAT +.++
AC ## WITH FUEL #. **
  IF (AC.TYPE(AC) < 3) OR (AC.LOCATION(AC) = 11)
    LET TUG = TUG - 1
  ALHAYS
  IF AC.LOCATION(AC) < 7
    IF SPOT(AC.LOCATION(AC)) = AC.ID(AC)
       LET SPOT(AC.LOCATION(AC)) = 0
       ADD 1 TO NUM-OPEN-SPOTS
       SCHEDULE A SPOT-OPEN NOW
    ELSE "AC MOVED TO BONE FOR EMERGENCY RECOVERY
    ALWAYS
  ELSE . AC IS COMING FROM THE HANGER DECK
  ALWAYS
  IF AC.LAUNCH.TIME(AC) = 0
   LET AC.LAUNCH.TIME(AC) = 9999
  ELSE
    IF (AC.LAUNCH.TIME(AC) \Leftarrow (TIME.V + 40)) AND ((AC.TYPE(AC) < 3)
                                          OR (AC.OP.STAT(AC) = 1.0))
                                          AND (M.SPOT.QCAC) <> 1)
      FILE AC IN SPOT-Q
    ALWAYS
  ALHAYS
  IF AC.TYPE(AC) = 1
    LET AC.LOCATION(AC) = 7
     IF M.BONE.FWD(AC) <> 1
       FILE THIS AC IN BONE.FWD
     ALWAYS
  ELSE
    LET AC.LOCATION(AC) = 8
     IF M.BONE.AFT(AC) <> 1
       FILE THIS AC IN BONE.AFT
     ALWAYS
  ALWAYS
  LET SOME. TOTAL = N. SOME. AFT + N. BOME. FWD
  PRINT 1 LINE WITH N. SONE. FWD, N. BONE. AFT, BONE. TOTAL,
                   NUM-DPEN-SPOTS THUS
                 N.BONE.AFT= ##
                                                 NUM.OPEN.SPOTS= **
                                 BONE.TOTAL= ++
N. BONE. FWD= **
  IF AC.OP.STAT(AC) <> 0 AND AC.FUEL.STAT(AC) < 1.0
     IF REFUELER < 4
        ADD 1 TO REFUELER
        LET DELAY = NORMAL.F(1.,.25,4)
        SCHEDULE AN AC-REFUELED GIVING AC
            IN ((1. - AC.FUEL.STAT(AC)) *
            TTREFUEL.AC(AC.TYPE(AC))) + DELAY MINUTES
        LET AC. SERVICE. FLAG(AC) = 1
```

```
IF AC. TYPE(AC) = 3 " AV8S CA.; LOAD WHILE REFUELING
           IF M.LOAD.SET(AC) <> 1
              IF N.LDAD.SET < 2
                 FILE AC IN LOAD. SET
                 PRINT 1 LINE WITH N.LOAD.SET THUS
  N.LOAD.SET= **
                 LET XSAR = TTLOAD.AC(AC.TYPE(AC))
                 LET SDEV = S.TTLOAD.AC(AC.TYPE(AC))
                 LET TTLOAD = NORMAL.F(XBAR, SDEV, 3)
                     + (NUM.AVBS.LDADED / 4.)
                 ADD 1 TO NUM.AV8S.LOADED
                 SCHEDULE AN AC.LOADED GIVING AC
                     IN TTLOAD MINUTES
                 LET AC.SERVICE.FLAG(AC) = 1
              ELSE
                 IF M.LOADER.Q(AC) <> 1
                    FILE AC IN LOADER.Q
                 ALWAYS
              ALHAYS
           ELSE
              PRINT 1 LINE THUS
AV8 IS ALREADY BEING LOADED
              LET AC.SERVICE.FLAG(AC) = 1
           ALHAYS
        AL WAYS
        FILE AC IN REFUELER.Q
     AL WAY S
  ALHAYS
        IF (N.TUG.Q > 0) AND (TUG < 4)
           REMOVE FIRST ACE FROM TUG.Q
           PRINT 1 LINE WITH ACE THUS
AC ** REMOVED FROM TUG.Q
           LET TUG = TUG + 1
           IF AC.DESTINATION(ACE) = 7 OR AC.DESTINATION(ACE) = 8
              LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
              LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
              LET TTRESPOT = NORMAL.F(XBAR,SDEV,2)
              SCHEDULE A BONE. ARRIVAL GIVING ACE IN TTRESPOT MINUTES
           ELSE
              IF AC.DESTINATION(ACE) < 7
                 LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                 LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
                 LET TTRESPOT = NORMAL.F(XBAR,SDEV,2)
                 SCHEDULE AN AC.RESPOTTED GIVING ACE IN TTRESPOT MINUTES
              ELSE . AC.DESTINATION(ACE) = 12
                 LET XBAR = TTARRIV.E.AC(AC.TYPE(4CE))
                 LET SDEV = S.TTARRIV. E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = NORMAL.F(XBAR, SDEV.8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                            IN TTARRIVE MINUTES
              ALWAYS
           ALWAYS
           IF (AC.LOCATION(ACE)=11) AND (N.ELEVATOR.Q > 0)
              REHOVE THE FIRST ACE FROM ELEVATOR. O
              IF AC.DESTINATION(ACE) = 12
                 IF (HANGER.EQUIV + 1) < (MAX.HANGER.EQUIV)
                    LET SPOT(11) = -AC.ID(ACE)
                    IF TUG < 4
```

```
ADD 1 TO TUG
                       LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                       LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                       LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
                       SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                 IN TTARRIV.E MINUTES
                       FILE ACE IN TUG.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
                    ALWAYS
                 ELSE
                    IF M.ELEVATOR. G(ACE) <> 1
                       FILE ACE IN ELEVATOR.Q
                    ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
                    FOR EACH ACE IN ELEVATOR.Q
                       WITH AC. DESTINATION (ACE) < 12
                    FIND THE FIRST CASE
                    IF FOUND
                       REMOVE THIS ACE FROM ELEVATOR.Q .
                       LET SPOT(11) = -AC.ID(ACE)
                       LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                       LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                       LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
                       SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                 IN TTARRIV.E MINUTES
                    ALHAYS
                 ALWAYS
                 LET SPOT(11) = -AC.ID(ACE)
                 LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                 LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                            IN TTARRIV-E MINUTES
              ALHAYS
           ALWAYS
        ALWAYS
     IF N.BONE.FWD > 7
        REMOVE LAST ACE FROM BONE.FWD
        IF (AC.LAUNCH.TIME(ACE)=9999)
           LET AC.DESTINATION(ACE) = 12
           IF (SPOT(11) = 0) AND (HANGER-EQUIV < MAX.HANGER-EQUIV)
              LET SPOT(11) = -AC.ID(ACE)
              IF TUG < 4
                 ADD 1 TO TUG
                 LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                 LET SDEY = S.TTARRIY. E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                              TTARRIV. E MINUTES
                          IN
              ELSE
                 FILE ACE IN TUG-Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
           ELSE
              IF M.ELEVATOR.Q(ACE) <> 1
```

```
FILE ACE IN ELEVATOR.Q
              ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
           ALWAYS
        AL WAYS
        FILE ACE IN BONE.FWD
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN BONE
     ALWAYS
     IF N.BONE.AFT > 9
        REMOVE LAST ACE FROM BONE. AFT
        IF (AC.LAUNCH.TIME(ACE)=9999)
           LET AC.DESTINATION(ACE) = 12
           IF (SPOT(11) = 0) AND (HANGER-EQUIV < MAX.HANGER.EQUIV)
              LET SPOT(11) = -AC.ID(ACE)
              IF TUG < 4
ADD 1 TO TUG
                 LET XBAR = TTARRIV.E.AC(AC.TYPE(4CE))
                 LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                          IN TTARRIV.E MINUTES
              ELSE
                 FILE ACE IN TUG-Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG-Q
              ALWAYS
           ELSE
              IF M. ELEVATOR.Q(ACE) <> 1
                 FILE ACE IN ELEVATOR.Q
              ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
           ALWAYS
        AL WAYS
        FILE ACE IN BONE.AFT
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN BONE
     ALWAYS
  RETURN
  END
```

```
EVENT DECK.ARRIVAL GIVEN AC
DEFINE AC AS AN INTEGER VARIABLE
 LET AC.LOCATION(AC) = 11
 LET SPOT(11) = AC.ID(AC)
  IF AC.TYPE(AC) = 2
    SUBTRACT 1.5 TO HANGER. EQUIV
    SUSTRACT 1.0 TO HANGER.EQUIV
  ALHAYS
  PRINT I LINE WITH HANGER. EQUIV THUS
HANGER.EQUIV = **.*
  IF TUG < 4
    ADD 1 TO TUG
    IF AC.DESTINATION(AC) < 7
       LET XBAR = TTRESPOT.AC(AC.TYPE(AC))
       LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
       LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
       SCHEDULE AN AC. RESPOTTED GIVING AC IN TTRESPOT MINUTES
    ELSE
       LET XBAR = TTRESPOT.AC(AC.TYPE(AC))
       LET SDEV = S.TTRESPOT.AC(AC.TYPE(AC))
       LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
       SCHEDULE A BONE.ARRIVAL GIVING AC IN TTRESPOT MINUTES
    ALHAYS
    LET SPOT(11) = 0
    IF N. ELEVATOR.Q > 0
       REMOVE THE FIRST ACE FROM ELEVATOR.Q
       IF AC.DESTINATION(ACE) = 12
IF CHANGER.EQUIV + 1) < CMAX.HANGER.EQUIV)
             LET SPOT(11) = -AC-ID(ACE)
             IF TUG < 4
                ADD 1 TO TUG
                LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                LET SDEY = S.TTARRIV.E.AC(AC.TYPE(ACE))
                LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
                SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                        IN TTARRIV. E MINUTES
                FILE ACE IN TUG.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
             ALWAYS
          ELSE
             IF M.ELEVATOR.Q(ACE) <> 1
                FILE ACE IN ELEVATOR.Q
             ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
             FOR EACH ACE IN SLEVATOR .Q
```

WITH AC.DESTINATION(ACE) < 12

```
FIND THE FIRST CASE
              IF FOUND
                 REMOVE THIS ACE FROM ELEVATOR.Q
                 LET SPOT(11) = -AC.ID(ACE)
                 LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                 LET SDEY = S.TTARRIV. E.AC(AC.TYPE(ACE))
                 LET TTARRIV.E = NORMAL.F(XBAR, SOEV, 8)
                 SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                           IN TTARRIV.E MINUTES
              ALWAYS
           ALWAYS
        ELSE
           LET SPOT(11) = -AC.ID(ACE)
           LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
           LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
           LET TTARRIV.E = NORMAL.F(XBAR,SDEV,8)
           SCHEDULE AN ELEVATOR-ARRIVAL GIVING ACE
                    IN TTARRIV.E MINUTES
        ALWAYS
     ALWAYS
  ELSE
     FILE AC IN TUG-Q
PRINT 1 LINE WITH AC THUS AC ** FILED IN TUG-Q
  ALWAYS
  RETURN
  END
```

```
EVENT DECK DECISION GIVEN FLIGHT
DEFINE COUNTER, FLIGHT, AC, T. AC, SPOTT, LOSPOT, AV 8. LAUNCH. TIME,
        TT.NUM.AC AS INTEGER VARIABLES
 DEFINE INTERVAL AS A REAL VARIABLE
 REMOVE THIS FLIGHT FROM SCHEDULE
 IF N.AVB.PLAN > 0
    REMOVE THE FIRST FLIGHTE FROM AV8.PLAN
    LET AV8.LAUNCH.TIME = FLT.TIME(FLIGHTE)
    FILE THIS FLIGHTE IN AV8.PLAN
    LET AVS.LAUNCH.TIME = 9999
 ALWAYS
** CHECK THAT DESIGNATED AC ARE STILL AVAILABLE FOR THIS FLIGHT
 LET COUNTER = 0
 PRINT 1 LINE WITH FLT.AC.NUM(FLIGHT), FLT.AC.TYPE(FLIGHT) THUS
THERE ARE # AC OF TYPE # IN THIS FLIGHT
 FOR J = 1 TO FLT.AC.NUM(FLIGHT), DO
    FOR EACH ACE IN THE SHIP,
       WITH AC.ID(ACE) = FLTARRAY(FLT.NUM(FLIGHT).J)
    FIND THE FIRST CASE
    IF FOUND
    PRINT 1 LINE WITH AC.ID(ACE), AC.LOCATION(ACE), AC.LAUNCH.TIME(ACE),
                     ETACAC.IDCACED) THUS
AC ** . AT **
              SCHED TO LAUNCH AT ***
                                      AND RETURN AT ***
    IF ((ETA(AC.ID(ACE)) + 5 <= FLT.TIME(FLIGHT)) OR
            (AC.LOCATION(ACE) < 9)) AND (AC.LAUNCH.TIME(ACE) =
             FLT.TIME(FLIGHT))
       ADD 1 TO COUNTER
       FILE THIS ACE IN FLT. WAVE(FLIGHT)
       LET FLTARRAY(FLT.NUM(FLIGHT),J) = 0
       PRINT 1 LINE WITH AC-ID(ACE) AND COUNTER THUS
               AC : ** COUNTER : **
       IF ((AC.LOCATION(ACE) < 7) AND (AC.DESTINATION(ACE) = 10)) "OTHERWISE
          IF AC.SERVICE.FLAG(ACE) = 0
             IF AC.FUEL.STAT(ACE) < 1.0
               IF REFUELER < 4
                  ADD 1 TO REFUELER
                  PRINT 1 LINE WITH REFUELER THUS
        REFUELER = **
                  LET DELAY = NORMAL.F(1.,.25,4)
                  SCHEDULE AN AC. REFUELED GIVING ACE
                           IN ((1. - AC.FUEL.STAT(ACE)) *
                              TTREFUEL.AC(AC.TYPE(ACE))) +
                              DELAY MINUTES
                  LET AC.SERVICE.FLAG(ACE) = 1
                  FILE ACE IN REFUELER.Q
               ALWAYS
```

ELSE

```
LET TTLDAD = 1.+ SETA.#(1.5.3.1.3)

* TTLDAD.AC(AC.TYPE(ACE))

IF (AC.LAUNCH.TIME(ACE) - TIME.V) < 10
                     SCHEDULE AN AC.LOADED GIVING ACE
                               IN TTLCAD MINUTES
                     SCHEDULE AN ACLUADED GIVING ACE
                               AT AC.LAUNCH.TIME(ACE)
                               - 10. + TTLOAD
                  ALWAYS
                  LET AC.SERVICE.FLAG(ACE) = 1
           ALWAYS
        ALWAYS
                    IF AC.LOCATION(ACE) = 9
..
                       IF AC.RECOVERY.TIME(ACE) = 0
                           REMOVE THIS ACE FROM THE DELTA.PATTERN
. .
. .
                           FILE THIS ACE IN DELTA.PATTERN
                           IF M.SPST.OCACE) = 1
                             REMOVE THIS ACE FROM SPOT.Q
. .
                             FILE THIS ACE IN SPOT-Q
                           ALWAYS
.
                       ALMAYS
                    ALWAYS
                     IF (AC.LOCATION(ACE) = 7) OR (AC.LOCATION(ACE) = 8)
                         IF AC.TYPE(ACE) < 3
                            IF NUM-QPEN-SPOTS > 0
                               IF AVE.LAUNCH.TIME < AC.LAUNCH.TIME(ACE)
                                  LET LOSPGT = 3
                               ELSE
                                  LET LOSPOT = 1
                               ALWAYS
                               FOR I = LOSPOT TO SPOT.AC(AC.TYPE(ACE).7).
                                  WITH SPOT(SPOT.AC(AC.TYPE(ACE),I)) = 0
                               FIND THE FIRST CASE
                               IF FOUND
                                  LET SPOTT = SPOT.AC(AC.TYPE(ACE).I)
                                  LET AC.DESTINATION(ACE) = SPOTT
                                  LET SPOT(SPOTT) = -AC.13(ACE)
                                   SUBTRACT 1 FROM NUM. OPEN. SPOTS
                                   PRINT 1 LINE WITH NUM. OPEN. SPOTS THUS
                                   NUM.OPEN.SPOTS = **
                                   IF AC. SERVICE.FLAG(ACE) = 6
                                      IF TUG < 4
                                         LET TUG = TUG + 1
                                         LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                                         LET SDEY = S.TTRESPOT.AC(AC.TYPE(ACE))
                                         LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                                         SCHEDULE AN AC. RESPOTTED GIVING ACE
                                                   IN TTRESPOT MINUTES
                                      ELSE
                                         FILE ACE IN TUG.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.3
```

是一个人,我们也没有一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们就是一个人,我们也会会会,我们就会就会这一个人,我们就是我们的人

ALWAYS

```
ELSE . CHECK FOR FREE TUG AFTER SERVICE COMPLE
                              ALWAYS
ELSE **(IF NOT FOUND)
                                FILE THIS ACE IN SPOT-Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT-Q
                             ALWAYS
                           ELSE "'(IF NUM.OPEN.SPOTS = 0)
                              FILE THIS ACE IN SPOT.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT-Q
                          ALWAYS
                                 " ACE IS AVE
                        ELSE
                         IF AC. SERVICE. FLAG(ACE) = 0
                           IF AC.FUEL.STAT(ACE) < 1
                              IF REFUELER < 4
                                 ADD 1 TO REPUELER
                                 LET DELAY - NORMAL.F(1.,.25,4)
                                 SCHEDULE AN AC. REPUELED GIVING ACE
                                    IN ((1. - AC.PUEL.STAT(ACE)) *
                                    TTREFUEL.AC(AC.TYPE(ACE))) +
                                    DELAY MINUTES
                                 LET AC.SERVICE.FLAG(ACE) = 1
                                 IF AC.LOAD.STAT(ACE) < 1
                                    IF M.LOAD.SET(ACE) <> 1
                                       IF N.LDAD.SET < 2
                                          FILE THIS ACE IN LOAD-SET
                                       PRINT 1 LINE WITH N.LOAD.SET THUS
     N.LOAD.SET = **
                                       LET XBAR = TTLDAD.AC(AC.TYPE(ACE))
                                       LET SDEY = S.TTLOAD.AC(AC.TYPE(ACE))
                                       LET TTLOAD = NORMAL. F(XBAR, SDEV, 3)
                                           + (NUM.AVAS.LOADED / 4.)
                                       ADD 1 TO NUM.AVES.LOADED
                                       SCHEDULE AN AC.LOADED GIVING ACE
                                          IN TTLOAD MINUTES
                                          LET AC.SERVICE.FLAG(ACE) = 1
                                       ELSE
                                          IP M.LOADER.QCACE) <> 1
                                             FILE ACE IN LOADER-Q
                                          ALWAYS
                                       ALWAYS
                                    ALWAYS
                                 ALWAYS
                              ELSE
                                 FILE ACE IN REFUELER-3
                              ALWAYS .
                           ELSE
                              IF AC.LDAD.STAT(ACE) < 1
                                 PRINT 1 LINE WITH AC. ID (ACE) THUS
            AV8 - FUELED, BUT NOT LOADED
                                 IF M.LOAD.SET(ACE) <> 1
                                    IF N.LOAD.SET < 2
                                       FILE THIS ACE IN LOAD-SET
                                        PRINT 1 LINE WITH N. LOAD.SET THUS
     N.LOAO.SET= **
                                   LET XBAR = TTLOAD.AC(AC.TYPE(ACE))
                                   LET SDEV = S.TTLOAD.AC(AC.TYPE(ACE))
                                   LET TTLOAD = NORMAL.F(X84R,SDEV,3)
                                            + (NUSCACLLZEVA.PUN) +
```

ቔቔ፟ኯቔቔቔቔቔቔቔቔቔቔቔቔቔቔጜኇ፞ጜዄጜኇቔ፟፟ዄ፟፟፟ፚዹጟኯኯቑቔቔቔቔቔቔቔጜዄጚዺዹቔቔዄዹፚጚኇዿኇቔቔቔቑቔቔቔቔዹዄጜዀዹጜኯዀዹፚዹጜዹዹዹዹዹዹዹዹዹዹዹዹዹዹዹዹዹዹዹዹ

```
ADD 1 TO NUM. AVSS.LDADED
                                  SCHEDULE AN AC-LUADED GIVING ACE
                                    IN TTLOAD MINUTES
                                      LET AC.SERVICE.FLAG(ACE) = 1
                                   ELSE
                                      IF M.LOADER.QCACE) <> 1
                                         FILE ACE IN LOADER-Q
                                      ALWAYS
                                   ALWAYS
                                ALHAYS
                             ELSE
                                SCHEDULE AN AC-LOADED GIVING ACE NOW
                                                                       " AC AL:
                                                                       . CONTRE
                                LET AC.SERVICE.FLAG(ACE) = 1
                             ALWAYS
                          ALHAYS
                         ALWAYS
                       ALWAYS
                   ALHAYS
                    IF (AC.LOCATION(ACE) = 12)
                       IF AC.TYPE(ACE) < 3
                          IF NUM-OPEN.SPOTS > 0
                             IF AVE.LAUNCH.TIME < AC.LAUNCH.TIME(ACE)
                                LET LOSPOT = 3
                             ELSE
                                LET LOSPOT = 1
                             ALWAYS
                             FOR I = LOSPOT TO SPOT.ACCAC.TYPECACE).7),
                                WITH SPOT(SPOT.AC(AC.TYPE(ACE).I)) = 0
                             FIND THE FIRST CASE
                             IF FOUND
                                LET SPOTT = SPOT.ACCAC.TYPE(ACE),I)
                                LET AC. DESTINATION (ACE) = SPOTT
                                LET SPOT(SPOTT) = -AC.ID(ACE)
                                SUBTRACT 1 FROM NUM-OPEN-SPOTS
                                PRINT 1 LINE WITH NUM-OPEN-SPOTS THUS
                                NUM. OPEN. SPOTS = **
                                IF SPGT(11) = 0
                                    LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                                    LET SOEY = S.TT ARRIV.E. AC(AC.TYPE(ACE))
                                    LET TTARRIV.E = MORMAL.F(XBAR, SDEV, 8)
                                    SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                                IN TTARRIV.E MINUTES
                                    LET SPOT(11) = -AC.ID(ACE)
                                 ELSE
                                    IF M.ELEVATOR.Q(ACE) <> 1
                                       FILE ACE IN ELEVATOR -Q
                                    ALWAYS
PRINT'S LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
                                 ALWAYS
                              ELSE .. (IF NOT FOUND)
                                 FILE THIS ACE IN SPOT-Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT-Q
                              AL JAYS
                           ELSE . **(IF NUM.OPEN.SPOTS = 0)
```

```
IF AC.TYPE(ACE) = 1
                                   FILE ACE IN BONE.FWD
                                    LET AC.DESTINATION(ACE) = 7
                                    IF SPGT(11) = 0
                                    LET XBAR = TTARRIV. S.AC(AC.TYPE(ACE))
                                    LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                                    LET TTARRIV.E = NORMAL.F(XBAR,SDEV,8)
                                     SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                                IN TTARRIV.E MINUTES
                                       LET SPOT(11) = -AC.ID(ACE)
                                    ELSE
                                       IF M.ELEVATOR. 3(ACE) <> 1
                                          FILE ACE IN ELEVATOR.Q
                                       ALMAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR Q
                                    ALWAYS
                                    FILE ACE IN SPOT.Q
                             ELSE
                                   FILE ACE IN BONE.AFT
                                   LET AC.DESTINATION(ACE) = 8
                                    IF SPGT(11) = 0
                                    LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                                    LET SDEY = S.TTARRIV.E.AC(AC.TYPE(ACE))
                                    LET TTARRIV.E = NORMAL.F(X84R.SDEV.8)
                                     SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                                IN TTARRIV-E MINUTES
                                       LET SPOT(11) = -AC.ID(ACE)
                                       IF M.ELEVATOR.Q(ACE) <> 1
                                          FILE ACE IN ELEVATOR.Q
                                       ALHAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
                                    ALWAYS
                                   FILE ACE IN SPOT.Q
                             ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT.Q
                          ALWAYS
                                " ACE IS AVS
                       ELSE
                          LET AC.DESTINATION(ACE) = 8
                          FILE ACE IN BONE.AFT
                          IF SPOT(11) = 0
                             LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                             LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                             LET TTARRIV.E = NORMAL.F(XBAR,SDEV,8)
                             SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                         IN TTARRIV. E MINUTES
                             LET SPOT(11) = -AC.ID(ACE)
                          ELSE
                             IF ((M.ELEVATOR.Q(ACE) <> 1)
                                      AND (SPOT(11) <> -AC.ID(ACE)))
                                FILE ACE IN ELEVATOR.Q
                             ALWAYS
PRINT 1 LINE WITH ACE THUS
AC == FILED IN ELEVATOR.Q
                          ALHAYS
                       ALWAYS
```

· Endings of the angle of the control of the contro

ALHAYS

ELSE

```
PRINT 1 LINE WITH COUNTER AND N.FLT. WAVE(FLIGHT) THUS
                COUNTER: -
                                  N.FLT.HAVE : **
     ALWAYS
   ELSE "ACE NOT POUND IN SHIP ...
      PRINT 1 LINE WITH J. FLTARRAY (FLT. NUM (FLIGHT), J),
                        PLT.TIME(PLIGHT) THUS
##ERROR ##
            THE 4TH AC (444) OF THE FLIGHT TO LAUNCH AT *** IS NOT FOUND
   ALHATS
  LOSP
  LET T.NUM.AC = FLT.AC.NUM(FLIGHT) - COUNTER
  LET TT.NUM.AC = T.NUM.AC
  PRINT 1 LINE WITH T. NUM. AC. PLT. AC. NUM (PLIGHT), COUNTER THUS
T. NUM. AC = - FLT. AC. NUM = **
                                 COUNTER -
  IF T.MUM.AC > 0 . CHECK DECK
     PRINT 1 LINE WITH T.NUM.AC THUS
   T.NUM.AC - ++ 1 ... CHECKING DECK FOR AVAILABLE AC
     IF FLT.AC.TYPE(FLIGHT) <= 2 ""ONLY HELOS CAN BE PARKED ON SPOTS
        FOR I = 1 TO 6
          WHILE T.NUM.AC > 0. DO
             IF SPOT(I) <> 0
                LET T.AC = ABS.F(SPOT(I))
                FOR EACH ACE IN THE SHIP,
                   WITH AC.ID(ACE) = T.AC,
                FIND THE FIRST CASE
                IF AC. TYPE(ACE) . FLT. AC. TYPE(FLIGHT)
                   IF AC.LAUNCH.TIME(ACE) > (FLT.TIME(FLIGHT) + 20)
                      IF AC.OP.STAT(ACE) >= .6
                         IF AC.DESTINATION(ACE) = AC.LOCATION(ACE)
                            LET AC.LAUNCH.TIME(ACE) = FLT.TIME(FLIGHT)
                             IF AC. FUEL. STAT(ACE) < 1.0
                                IF REPUBLER < 4
                                   ADD 1 TO REPUELER
                                   LET DELAY = MORMAL.F(1.,.25,4)
                                   SCHEDULE AN AC. REFUELED GIVING ACE
                                     IN ((1. - AC.PUEL.STAT(ACE)) +
                                     TTREPUEL.AG(AC.TYPE(ACE)))
                                     . DELAY MINUTES
                                   LET AC. SERVICE.FLAG(ACE) = 1
                                ELSE
                                  FILE ACE IN REPUBLER. 3
                                ALHAYS
                            ELSE
                                LET TTLOAD = 1.+ 9ET4.F(1.5,3.0,3)
                                           * TTLGAG.AC(AC.TYPE(ACE))
                                IF (AC.LAUNCH.TIME(ACE) - TIME.V) < 10
                                   SCHEDULE AN ACLUADED GIVING ACE
                                     IN TTLOAD MINUTES
                                   SCHEDULE AN AC.LDADED GIVING ACE
                                      AT AC.LAUNCH.TIME(ACE)
                                      - 10. + TTLGAD
                                ALWAYS
                                LET AC.SERVICE.FLAG(ACE) = 1
                            ALJAYS
```

SUBTRACT 1 FROM T.NUM.AC

ቔዀዿኯቚኯቚኯፙቔቔቔዀጚዄጚዄኇኇዀዄዀኇፙኇኇኯቔዀቔኯቔኯቔኯቔኯቔኯቔኯጚኯጚኇጜጚጚጚዄጚዿዄቔዺጜቔ

```
FILE THIS AGE IN FLT. WAVE(FLIGHT)
                              PRINT 1 LINE WITH AC.ID(ACE), AC.LOCATION(ACE),
                                    AC.FUEL.STAT(ACE),AC.LDAD.STAT(ACE),
                                    FLT.TIME(FLIGHT).T.NUM.AC THUS
AC ** AT ** WITH FUEL *.** AND LOAD *.** JOINS FLIGHT **** ... T.NUM.AC *
                          ALWAYS
                       ALWAYS
                    ALWAYS
                 ALWAYS
             AL WAYS
        LOOP
     ALWAYS
  ALHAYS
  IF T.NUM.AC > 0 "CHECK DELTA
     PRINT 1 LINE WITH T.NUM.AC THUS
   T. NUMLAC . .. 2 CHECKING DELTA FOR AVAILABLE AC
     FOR EACH ACE IN DELTA.PATTERN
        WHILE T.NUM.AC > 0, DO
            IF AC.OP.STAT(ACE) > .6
               IF AC.TYPECACE) = FLT.AC.TYPECFLIGHT)
                  IF AC.LAUNCH.TIME(ACE) > (FLT.TIME(FLIGHT) + 20)
                     LET AC.LAUNCH.TIME(ACE) = PLT.TIME(FLIGHT)
                     SUSTRACT 1 FROM T.NUM.AC
                     FILE THIS ACE IN PLT. WAVE(PLIGHT)
                     PRINT 1 LINE WITH AC. IDCACE), AC. LOCATION (ACE),
                                    AG.DESTINATION(ACE), AG.FUEL.STAT(ACE),
                                   AC-LOAD-STAT(ACE).
                                   FLT. TIME(FLIGHT) .T. NUM. AC THUS
AC 40 AT 40 WITH DEST 80 FUEL 4.00 LOAD 4.00 JOINS FLIGHT 4000 ... T.NUM.AC :
                     IF M-SPOT.Q(ACE) = 1
                        REMOVE THIS ACE FROM SPOT.Q
                        PILE THIS ACE IN SPOT. O'
PRINT 1 LINE WITH ACE THUS
AC ** RE-FILED IN SPOT.Q
                 ALHAYS
              ALWAYS
           ALHAYS
     LJOP
  ALHAYS
""NO AC AVAIL FOR FLIGHT...LOOK IN BONE IF T.HUM.AC > 0 ""CHECK BONES
     PRINT 1 LINE WITH T.NUM.AC THUS
   T.NUM.AC = ** 3 CHECKING BONES FOR AVAILABLE AC
     IF FLT.AC. TYPE(FLIGHT) = 1
        FOR EACH ACE IN BOME. PWD
           DG .C < DA. PUN-T BILHW
              IF AC.OP.STAT(ACE) >= .6
                 IF AC.TYPE(ACE) = FLT.AC.TYPE(FLIGHT)
                    IF AC.LAUNCH.TIME(ACE) > (FLT.TIME(FLIGHT) + 20)
                       LET AC.LAUNCH.TIME(ACE) = FLT.TIME(FLIGHT)
                        SUBTRACT 1 FROM T.NUM.AC
                        IF AC.TYPE(ACE) < 3
                           IF NUM. OPEN. SPOTS > 0
                              IF AVS.LAUNCH.TIME < AC.LAUNCH.TIME(ACE)
                                 LET LOSPOT = 3
                              ELSE
                                 LET LOSPOT = 1
                              ALHAYS
                              FOR I - LOSPOT TO SPOT.AC(AC.TYPE(ACE),7),
```

```
WITH SPOT(SPOT.ACCAC.TYPE(ACE).I)) = 0
                             FIND THE FIRST CASE
                              IF FOUND
                                 LET SPOTT = SPOT.AC(AC.TYPE(ACE),I)
                                 LET AC.DESTINATION(ACE) = SPOTT
                                 LET SPOT(SPOTT) = -AC.IO(ACE)
                                 SUBTRACT 1 FROM NUM. OPEN. SPOTS
                                 IF TUG < 4
                                    LET TUG = TUG + 1
                                    LET XBAR = TTRESPOT. ACCAC.TYPE(ACE))
                                   LET SDEV = S.TTRESPOT.ACCAC.TYPECACE))
                                    LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                                    SCHEDULE AN AC-RESPOTTED GIVING ACE
                                                IN TTRESPOT MINUTES
                                 ELSE
                                    FILE ACE IN TUG-Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
                                 AL WAYS
                              ELSE .. (IF NOT FOUND)
                                 PILE THIS ACE IN SPUT-Q
PRINT I LINE WITH ACE THUS
AC ** FILED IN SPOT-Q
                             ALWAYS
                           ELSE **(IF NUM.OPEN.SPOTS = 0)
                              FILE THIS ACE IN SPOT-Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT-Q
                          ALWAYS
                        ELSE
                                  " ACE IS AVE
                           IF AC.FUEL.STAT(ACE) < 1
                              IF REFUELER < 4
                                 ADD 1 TO REPUELER
                                 LET DELAY = NORMAL.F(1.,.25,4)
                                 SCHEDULE AN AC. REFUELED GIVING ACE
                                   IN ((1. - AC. FUEL. STAT(AGE)) *
                                   TTREFUEL.AC(AC.TYPE(ACE)))
                                   + DELAY MINUTES
                                 LET AC.SERVICE.FLAG(ACE) = 1
                                 IF M.LOAD.SET(ACE) <> 1
                                    IF AC.LOAD.STAT(ACE) < 1
                                       IF N.LOAD.SET < 2
                                          FILE ACE IN LOAD. SET
                                          PRINT 1 LINE WITH N.LOAD.SET THUS
       N.LGAD.SET = **
                                          LET XE AR = TTLDAD.AC(AC.TYPE(ACE))
                                          LET SDEV = S.TTLDAO.AC(AC.TYPE(ACE))
                                          LET TTLOAD = NORMAL.F(XBAR, SDEV, 3)
                                                + (NUM.AV8S.LDADED / 4.)
                                          ADD I TO NUM.AVES.LOADED
                                          SCHEDULE AN ACLUADED GIVING ACE
                                            IN TTLOAD MINUTES
                                          LET AC.SERVICE.FLAG(ACE) = 1
                                       ELSE
                                          IF M.LOADER.2(ACE) <> 1
                                             FILE ACE IN LUADER-Q
                                           BLHAYS
                                       ALHAYS
                                    ALHAYS
                                 ALHAYS
```

THE REPORT OF THE PARTY OF THE

```
FILE ACE IN REFUELER.Q
                              ALWAYS
                           ELSE
                             IF M.LUAD.SET(ACE) <> 1
                              IF AC.LOAD.STAT(ACE) < 1
                                 IF N.LDAD.SET < 2
                                    FILE ACE IN LOAD.SET
                                    PRINT 1 LINE WITH N.LDAD.SET THUS
       N.LJAD.SET = **
                                    LET XBAR = TTLBAQ.AC(AC.TYPE(ACE))
                                    LET SDEV = S.TTLOAD. AC(AC.TYPE(ACE))
                                    LET TTLOAD = NORMAL.F(XBAR,SDEV.3)
                                            + (NUM.AV8S.LOADED / 4.)
                                    ADD 1 TO NUM.AV85.LBADED
                                    SCHEDULE AN AC.LOADED GIVING ACE
                                      IN TTLOAD MINUTES
                                    LET AC.SERVICE.FLAG(ACE) = 1
                                 ELSE
                                    IF M.LDADER.QCACE) <> 1
                                       FILE ACE IN LOADER.Q
                                    ALHAYS
                                 ALWAYS
                              ALWAYS
                             ALHAYS
                          ALWAYS
                       ALWAYS
                        FILE THIS ACE IN FLT. WAVE(FLIGHT)
                             PRINT 1 LINE WITH AC.IDCACE), AC.LOCATION (ACE),
                                   AC. FUEL. STAT(ACE), AC. LOAD. STAT(ACE),
                                   FLT. TIME(FLIGHT), T. NUN. AC THUS
AC ** AT ** WITH FUEL *.** AND LOAD *.** JOINS FLIGHT **** ... T.NUM.AC= *
                    ALWAYS
                ALHAYS .
             AL WAYS
        LOGP
    ELSE
        FOR EACH ACE IN BONE.AFT
           WHILE T.NUM.AC > 0, DD
              IF AC.OP.STAT(ACE) >= .6
                 IF AC.TYPE(ACE) = FLT.AC.TYPE(FLIGHT)
                    IF AC. LAUNCH. TIME(ACE) > (FLT. TIME(FLIGHT) + 20)
                       LET AC.LAUNCH.TIME(ACE) = FLT.TIME(FLIGHT)
                       SUBTRACT 1 FROM T.NUM.AC
                       IF NUM.OPEN.SPOTS > 0
                           IF AV8.LAUNCH.TIME < AC.LAUNCH.TIME(ACE)
                             LET LOSPOT = 3
                          ELSE
                             LET LOSPOT = 1
                          ALWAYS
                          FOR I = LOSPOT TO SPOT.AC(AC. TYPE(ACE).7).
                             WITH SPUT(SPUT.AC(AC. TYPE(ACE).I)) = :
                          FIND THE FIRST CASE
                          IF FOUND
                              IF AC. TYPE(ACE) < 3
                                LET SPUTT = SPUT.AC(AC.TYPE(ACE),I)
                                LET AC.DESTINATION(ACE) = SPOTT
                                LET SPOT(SPOTT) = -4C.ID(ACE)
                                SUBTRACT 1 FROM NUM. SPEN. SPOTS
                                PRINT 1 LINE WITH NUM-SPEN-SPOTS THUS
```

```
IF TUG < 4
                                     LET TUG = TUG + 1
                                     LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                                     LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
LET TTRESPOT = NGRHAL.F(XBAR,SDEV,2)
                                     SCHEDULE AN AC. RESPOTTED GIVING ACE
                                                  IN TTRESPOT MINUTES
                                  ELSE
                                     FILE ACE IN TUG-Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
                                 ALHAYS
                              ELSE
                                         "ACE IS AVE
                                 IF AC. FUEL. STAT (ACE) < 1
                                     IF REFUELER < 4
                                        ADD 1 TO REFUELER
                                        LET DELAY = NORMAL.F(1.,.25,4)
                                        SCHEDULE AN AC.REFUELED GIVING ACE
                                         IN ((1. - AC.FUEL.STAT(ACE)) *
                                         TTREFUEL.AC(AC.TYPE(ACE))
                                         + DELAY MINUTES
                                        LET AC.SERVICE.FLAG(ACE) = 1
                             IF M.LDAD.SET(ACE) <> 1
                                 IF AC.LO40.STAT(ACE) < 1
                                    IF N.LOAD.SET < 2
                                       FILE ACE IN LOAD.SET
                                        PRINT 1 LINE WITH N.LOAD.SET THUS
          N.LOAD.SET = **
                                        LET XBAR = TTLOAD.AC(AC.TYPE(ACE))
                                        LET SDEV = S.TTLDAD.AC(AC.TYPE(ACE))
                                        LET TTLOAD = NORMAL.F(XBAR, SDEV, 3)
                                             + (NUM.AV8S.LOADED / 4.)
                                        ADD 1 TO NUM.AVES.LOADED
                                        SCHEDULE AN AC-LDADED GIVING ACE
                                            IN TTLEAD MINUTES
                                        LET AC.SERVICE.FLAG(ACE) = 1
                                     ELSE
                                        IF M.LOADER.Q(ACE) <> 1
                                           FILE ACE IN LDADER-Q
                                        ALWAYS
                                     ALWAYS
                                 ALWAYS
                              ALHAYS
                                        FILE ACE IN REFUELER .Q
                                     ALWAYS
                                 ELSE
                                     IF AC.LOAD.STAT(ACE) < 1
                                      IF M.LDAD.SET(ACE) <> 1
                                       IF N.LOAD.SET < 2
                                          FILE ACE IN LOAD.SET
                                          PRINT 1 LINE WITH N.LDAD.SET THUS
      N.LOAD.SET= **
                                    LET XBAR = TTLDAD.AC(AC.TYPE(ACE))
                                    LET SDEV = S.TTLOAD.AC(AC.TYPE(ACE))
                                    LET TTLOAD = NORMAL.F(X8AR,SDEV.3)
                                            + (NUM.AV8S.LGADED / 4.)
                                    ADD 1 TO NUM. AV95.LJADED
                                    SCHEDULE AN AC-LOADED GIVING ACE
```

** = STEQS-HIGHUN

```
IN TTLDAD MINUTES
                                          LET AC. SERVICE. FLAG(ACE) = 1
                                       ELSE
                                          IF M.LOADER.Q(ACE) <> 1
                                             FILE ACE IN LOADER.Q
                                        ALWAYS
                                       ALWAYS
                                      ALHAYS
                                     ALWAYS
                                  ALWAYS
                              ALWAYS
E **(IF NOT FOUND)
                              FILE THIS ACE IN SPOT.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT.Q
                           ALHAYS
                              **(IF NUM.OPEN.SPOTS = 0)
                        ELSE
                           FILE THIS ACE IN SPOT .Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT.Q
                        ALWAYS
                        FILE THIS ACE IN FLT. WAVE(FLIGHT)
                             PRINT 1 LINE WITH AC.ID(ACE), AC.LOCATION(ACE),
                                    AC. FUEL. STAT( ACE), AC. LOAD. STAT(ACE),
                                    FLT. TIME(FLIGHT), T. NUM. AC THUS
AC ** AT ** WITH FUEL *.** AND LOAD *.** JOINS FLIGHT **** ... T.NUM.AC= *
                     ALHAYS
                   ALWAYS
              ALHAYS
           LOOP
     ALWAYS
  ALWAYS
  IF TT.NUM.AC > F
     LET TT.NUM.AC = TT.NUM.AC - T.NUM.AC
     ADD TT.NUM.AC TO NUM.REPLACED.AC
  ALHAYS
  IF T.NUM.AC > 0
     PRINT 1 LINE WITH T.NUM.AC THUS
   T.NUM.AC = ** 4
                       ... UNABLE TO FIND AVAILABLE AC TO FILL THIS FLIGHT
     FOR I = 1 TO T.NUM.AC, DO
         FOR J = 1 TO FLT.AC.NUM(FLIGHT),
WITH FLTARRAY(FLT.NUM(FLIGHT),J) <> 0
         FIND THE FIRST CASE
         IF FOUND
            FOR EACH ACE IN THE SHIP,
                 WITH AC.ID(ACE) = FLTARRAY(FLT.NUM(FLIGHT).J)
            FIND THE FIRST CASE
            IF FOUND
                ADD 1 TO COUNTER
                FILE THIS ACE IN FLT.WAVE(FLIGHT)
                LET FLTARRAY(FLT.NUM(FLIGHT),J) = 0
                PRINT 1 LINE WITH AC.ID(ACE), FLT.TIME(FLIGHT) THUS
NO REPLACEMENT AC ARE AVAILABLE...AC ** IS STILL SCHEDULED TO LAUNCH AT ****
            ELSE
                PRINT 1 LINE THUS
                  ***ERROR*** AC NOT FOUND IN FLTARRAY
            ALAAYS
```

```
ELSE
           PRINT 1 LINE THUS
                ***ERROR*** AC NOT FOUND IN DECK.DECISION
        ALWAYS
    LOOP
 ALWAYS
 FILE FLIGHT IN PLAN
 SCHEDULE A FLIGHT. CHECK GIVING FLIGHT AT (FLT.TIME(FLIGHT)
               + (1. + BETA.F(1.5,3.0,9) * 2.))
 IF FLT.AC.TYPE(FLIGHT) = 3
     FILE FLIGHT IN AVS.PLAN
 ALWAYS
 IF N.SCHEDULE > 0
    REMOVE FIRST FLIGHTE FROM SCHEDULE
    IF (FLT.TIME(FLIGHTE) - TIME.V) >= 46
       SCHEDULE A DECK-DECISION GIVING FLIGHTE IN
                                (FLT.TIME(FLIGHTE)-TIME.V-40) MINUTES
       FILE FLIGHTE IN SCHEDULE
    ELSE
       SCHEDULE A DECK-DECISION GIVING FLIGHTE IN 2 MINUTES
       FILE FLIGHTE IN SCHEDULE
    ALWAYS
 ELSE
    SCHEDULE A STOP-SIMULATION IN 200 MINUTES
    PRINT 1 LINE WITH TIME.V. (TIME.V+200) THUS
STOP.SIMULATION SCHEDULED AT ****.** TO OCCUR AT SIM.TIME = ****.**
 ALHAYS
RETURN
END
```

```
EVENT DELTA.ARRIVAL GIVEN AC
   * * ******************************
     DEFINE AC, ACE.T, FLAG, SPOTT AS INTEGER VARIABLES
     DEFINE INTERVAL AS REAL VARIABLES
     PRINT 1 LINE WITH AC.ID(AC), AC.FUEL.STAT(AC), AC.LDAD.STAT(AC),
                       AC.OP.STAT(AC), AC. FLYING. TIME(AC) THUS
   AC ** JITH FUEL *.** AND LOAD *.** HAS OP.STAT *.** AND FLYING.TIME ***.*
     LET AC. DELTA. ARRIVAL. TIME(AC) = TIME.V
     LET AC-LUCATION(AC) = 9
     LET ETA(AC.ID(AC)) = 0
        THIS SECTION OF CODE UPDATES THE FUEL AND PRIORITY STATUS VARIABLES OF
   ** THE AIRCRAFT IN THE DELTA PATTERN
       FOR EACH ACE IN DELTA. PATTERN, DO
         LET DELTA = ((TIME.V - DELTA.UPDATE.TIME)/60) *
                               (FUELUSE. AC(AC.TYPE(ACE)))
         LET AC.FUEL.STAT(ACE) = AC.FUEL.STAT(ACE) - DELTA
         LET AC.FLYING.TIME(ACE) = (AC.FUEL.STAT(ACE)
                                / FUELUSE.AC(AC.TYPE(ACE))) + 60.
         LET AC.PRIDRITY(ACE) = AC.PRIDRITY(ACE) + DELTA # .2
   PRINT 1 LINE WITH AC.ID(ACE), AC.DESTINATION(ACE), AC.PRIORITY(ACE),
                 AC.FUEL.STAT(ACE), AC.FLYING.TIME(ACE) THUS
   AC ** WITH DEST ** HAS PRIDRITY **** FUEL.STAT *.** FLYING.TIME ***.*
         REMOVE THIS ACE FROM THE DELTA.PATTERN
C
         FILE THIS ACE IN DELTA.PATTERN
       LOGP
       LET DELTA.UPDATE.TIME = TIME.V
         FILE THE ARRIVING AIRCRAFT IN THE DELTA PATTERN.
       FILE THIS AC IN DELTA.PATTERN
       FILE THIS AC IN SPOT-Q
   PRINT 1 LINE WITH AC THUS
   AC ** FILED IN SPOT-Q
         THIS SECTION OF CODE DETERMINES WHAT ACTION SHOULD BE TAKEN FOR THE
       AIRCRAFT IN DELTA. CHECK TO SEE
   . .
   .
       IF THERE EXIST AN EMERGENCY STATUS FOR ANY OF THE AIRCRAFT IN THE DELTA
       PATTERN. IF AN EMERGENCY EXIST. ALLOW THE EMERGENCY AIRCRAFT TO RECOVER
     LET FLAG = 0
     FOR EACH ACE IN DELTA.PATTERN,
         #ITH ((AC.DESTINATION(ACE) = 9)
              AND (AC-PRIGRITY(ACE) > PRIGRITY.STAT.AC(AC.TYPE(ACE))))
     FIND THE FIRST CASE
     IF FOUND
        IF AC.PRIGRITY(ACE) > EMERGENCY.STAT.AC(AC.TYPE(ACE))
           SCHEDULE A SPOTLEMERGENCY GIVING ACE IN .25 MINUTES
           PRINT 1 LINE WITH AC.ID(ACE), TIME.V THUS
   AC ** DECLARES EMERGENCY AT *****
           LET FLAG = 1
        ELSE
           IF AC.PRIDRITY(ACE) > PRIDRITY.STAT.AC(AC.TYPE(ACE))
              SCHEDULE A SPOT-PRIORITY GIVING ACE IN 1 MINUTE
              PRINT 1 LINE WITH AC.ID(ACE).TIME.V THUS
```

```
AC ** DECLARES PRIORITY AT ****.**
LET FLAG = 1
        AL WAYS
     ALWAYS
  ALWAYS
  IF FLAG = 0
     LET INTERVAL = 0
     LET I = 7
     PRINT 1 LINE THUS
THE FOLLOWING AC ARE IN SPOT. Q:
     FOR EACH ACE IN SPOT-Q, DO
         IF AC.LOCATION(ACE) = 9
            LET INDEX(AC.ID(ACE)) = 8
            LET INDEX(AC.ID(ACE)) = 7
         ALWAYS
         PRINT 1 LINE WITH AC. ID(ACE), AC. LOCATION(ACE),
                           AC.LAUNCH.TIME(ACE) THUS
              AT * SCHED TO LAUNCH AT ***
     LOOP
     WHILE ((NUM-OPEN-SPOTS > 0) AND (N.SPOT.Q > 0) AND (I > 1)), DO
        SUBTRACT 1 FROM I
     PRINT 1 LINE WITH NUM-OPEN-SPOTS, N-SPOT.Q, I, SPOT(I) THUS
  ** = I + POTCI = ** = POTCI = **
        IF SPOT(I) = 0
           LET SPOTT = I
           IF N.AVS.PLAN > 0
              REMOVE THE FIRST PLIGHTE FROM AV8.PLAN
              LET AV8.LAUNCH.TIME = FLT.TIME(FLIGHTE)
              FILE THIS FLIGHTE IN AVS.PLAN
           ELSE
              LET AV8.LAUNCH.TIME = 9999
           ALWAYS
           FOR EACH FLIGHTE IN THE PLAN
               WITH ((FLT.AC.TYPE(FLIGHTE) <> 3)
                    AND (FLT.DELAY(FLIGHTE) = 0))
           FIND THE FIRST CASE
           IF FOUND
              LET HELD.LAUNCH.TIME = FLT.TIME(FLIGHTE)
           ELSE
              LET HELD.LAUNCH.TIME = 9999
           ALWAYS
              PRINT 1 LINE WITH AV8. LAUNCH. TIME, HELD. LAUNCH. TIME,
                                SPOTT THUS
AV8.LAUNCH.TIME= ***
                        HELD.LAUNCH.TIME= ****
                                                  DPEN SPOT IS **
           FOR EACH ACE IN SPOT.Q,
              FOR J = 1 TO SPOT.AC(AC.TYPE(ACE), INDEX(AC.ID(ACE))),
                 WITH ((SPOT.AC(AC.TYPE(ACE),J) = SPOTT)
                  AND ((CAG.LOCATION(ACE) = 9)
                  AND ((AC.FLYING.TIME(ACE) < 33)
                    DR ((((AC.LAUNCH.TIME(ACE) - TIME.V)
                          > AC.FLYING.TIME(ACE))
```

```
OR ((AC.LAUNCH.TIME(ACE)-TIME.V) < 25))
                           AND ((CAVB.LAUNCH.TIME
                                  > AC.LAUNCH.TIME(ACE))
                               DR (AV8.LAUNCH.TIME > (TIME.V + 20))
                           OR ((AC.TYPE(ACE) = 3)
                                AND (AV8.LAUNCH.TIME > (TIME.V + 10))))
                           AND (CHELD.LAUNCH.TIME > (TIME.V + 10))
                               OR ((HELO.LAUNCH.TIME + 1.)
                                    > AC.LAUNCH.TIME(ACE)))))
                      DR ((AC.LOCATION(ACE) < 9)
                         AND ((SPOTT > 2)
                             OR (AV8.LAUNCH.TIME >= AC.LAUNCH.TIME(ACE)))
                         AND ((AC.LAUNCH.TIME(ACE) - TIME.V) < 25))))
             . FIND THE FIRST CASE
0
                        ** AC COMPATIBLE WITH SPOT IDENTIFIED
               IF FOUND
                  PRINT 1 LINE WITH AC.ID(ACE), SPOTT, AC.LAUNCH.TIME(ACE),
                                    AC.FLYING.TIME(ACE) THUS
0
        AC == COMPATIBLE TO GO TO SPOT = HAS LAUNCH.TIME= +== AND FLYING.TIME = +
0
                     IF AC.LOCATION(ACE) = 9
                       IF FLAG = 0 . **DRAWS TTRECOVER ONLY ON FIRST PASS
                        LET XBAR = TTRECOVER.AC(AC.TYPE(ACE))
                        LET SDEY = S.TTRECOVER.AC(AC.TYPE(ACE))
                        LET TTRECOVER = NORMAL.F(XBAR, SDEV, 1)
                        IF TTRECGYER < (LAST.RECOVERY.TIME + .5 - TIME.V)</pre>
                           LET TTRECOVER = LAST.RECOVERY.TIME + .5 - TIME.V
                        ALHAYS
                        IF TTRECOVER < (LAST-LAUNCH.TIME + 2 - TIME.V)
                           LET TTRECOVER = LAST.LAUNCH.TIME + 2 - TIME.V
                        ALWAYS
                        LET FLAG = 1
                       ALWAYS
                        LET AC.DESTINATION(ACE) = SPCTT
                        LET SPOT(SPOTT) = -AC.ID(ACE)
                        SUBTRACT 1 FROM NUM-OPEN-SPCTS
                        PRINT 1 LINE WITH NUM. OPEN. SPOTS THUS
                        NUM.OPEN.SPOTS = **
                        SCHEDULE AN AC.RECOVERED GIVING ACE
                                 IN TTRECOVER + INTERVAL MINUTES
                        ADD UNIFORM.F(.5,.8,1) TO INTERVAL
                        LET LAST.RECOVERY.TIME = TTRECOVER + TIME.V
                                               + INTERVAL
                        PRINT 1 LINE WITH AC. ID(ACE), SPOTT,
                                     (TTRECOVER+INTERVAL) THUS
    AC ** WILL RECOVER TO SPOT ** IN ***. * MINUTES
                        REMOVE THIS ACE FROM SPOT.Q
                     ELSE
                       IF AC.LUCATION(ACE) < 12
                        IF AC.TYPE(ACE) < 3
```

```
LET AC.DESTINATION(ACE) = SPOTT
LET SPOT(SPOTT) = -AC.ID(ACE)
                         IF AC.SERVICE.FLAG(ACE) = 0
                            IF TUG < 4
                               ADD 1 TO TUG
                               LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                               LET SDEV = S.TTRESPET.AC(AC.TYPE(ACE))
                               LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                               SCHEDULE AN AC.RESPOTTED GIVING ACE
                                         IN TTRESPOT MINUTES
                            PRINT 1 LINE WITH AC. ID(ACE), SPOTT THUS
                          AC ** WILL RESPOT TO SPOT **
                            ELSE
                               FILE THIS ACE IN TUG. Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
                            ALWAYS
                         ALWAYS
                         IF AC-LOCATION(ACE) > 6
                            SUBTRACT 1 FROM NUM-OPEN-SPOTS
                            PRINT 1 LINE WITH NUM. OPEN. SPOTS THUS
                            NUM. OPEN. SPOTS = **
                         ALWATS
                         REMOVE THIS ACE FROM SPOT-Q
                     ELSE
                         IF AC.LAUNCH.TIME(ACE) = AV8.LAUNCH.TIME
IF SPOTT <= 2 "'AV8"S CAN RECOVER ON 1,2,5,6 BUT LA
                               IF (AC.LAUNCH.TIME(ACE) - TIME.V) <= 10.
                                  LET AC. DESTINATION (ACE) = SPOTT
                                  LET SPOT(SPOTT) = -AC.ID(ACE)
                                  LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                                  LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
                                  LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                                   SCHEDULE AN AC. RESPOTTED GIVING ACE IN
                                         TTRESPOT MINUTES
                              PRINT 1 LINE WITH AC.ID(ACE), SPOTT THUS
                     WILL RESPOT TO **
                                   SUBTRACT 1 FROM NUM. OPEN. SPOTS
                                  PRINT 1 LINE WITH NUM-OPEN-SPOTS THUS
                                  NUM-OPEN.SPOTS = **
                                  REMOVE THIS ACE FROM SPOT. Q
                               ELSE
                                   SCHEDULE A SPOT. OPEN IN (AC.LAUNCH. TIME (ACE)
                                      - 10. + UNIFORM.F(.1,2.,9)) MINUTES
                               ALWAYS
                            ALWAYS
                         ALWAYS
                     ALWAYS
                    ELSE
                        IF AC-TYPECACE) < 3
                           LET AC.DESTINATION(ACE) = SPOTT
                           LET SPOT(SPOTT) = -AC.ID(ACE)
                           SUBTRACT 1 FROM NUM-OPEN. SPOTS
                           PRINT 1 LINE WITH NUM. OPEN. SPOTS THUS
                           NUM. OPEN. SPOTS = **
                        ELSE
                           LET AC.DESTINATION(ACE) = 3
                           FILE ACE IN BONE.AFT
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN BONE
```

```
ALWAYS
                     IF (SPOT(11) = 0) AND
                             (HANGER.EQUIV < MAX.HANGER.EQUIV)
                        LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                        LET SDEV - S.TTARRIV. E.AC(AC.TYPE(ACE))
                        LET TTARRIV.E = NORMAL.F(XSAR,SDEV,8)
                         SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                    IN. TTARRIV.E MINUTES
                       LET SPOT(11) = -AC.ID(ACE)
                     ELSE
                        IF M.ELEVATOR.QCACE) <> 1
                          FILE ACE IN ELEVATOR-Q
                        ALWAYS
PRINT I LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.Q
                     REMOVE ACE FROM SPOT-Q
                  ALWAYS
                ALWAYS
          PRINT 1 LINE WITH M.SPOT.Q. NUM. OPEN. SPOTS. I. SPOT(I),
                           AC.ID(ACE), AG.LOCATION(ACE) THUS
## DOLOA ** C.ID ** AC.LOC **
```

ALWAYS

AL HAYS

LOOP ALHAYS RETURN END

ቔዀቔዹዀቔዺዀቔቔዹቔዀቔዹጜኯፙቔቔዿቔቑቔቔቔዿቔዹዿዹቝቔዹቔዻኇዺኯ፟ኯቔዹቔዻቔዻቔዹጜኯጜ_ቔፚዹዹዹፘፘዿቔዿኯዺቔ

```
EVENT ELEVATOR. ARRIVAL GIVEN AC
DEFINE AC AS AN INTEGER VARIABLE
 IF AC.LOCATION(AC) < 12
   LET TUG = TUG - 1 ""ALL AIRCRAFT ARE MOVED BY TUG TO AND FROM THE ELEVATO
   IF AC.LOCATION(AC) < T
      LET SPOT(AC.LOCATION(AC)) = 0
      ADD 1 TO MUM. OPEN. SPOTS
      PRINT 1 LINE WITH NUM-OPEN-SPOTS THUS
      NUM.OPEN.SPOTS = **
      SCHEDULE A SPOT-OPEN NOW
   ELSE
      IF AC.LOCATION(AC) = 7
         REMOVE AC FROM BONE.FWD
      ELSE
         IF AC.LOCATION(AC) = 8
           REMOVE AC FROM BONE.AFT
         ALHAYS
      ALWAYS
   ALHAYS
   LET TTARRIV.H = .5 + ((BETA.F(1.5,5.0,7)) + 4.)
   SCHEDULE A MANGER-ARRIVAL GIVING AC IN TTARRIV-H MINUTES
   LET AC.LOCATION(AC) = 11
   LET SPOT(11) = AC.ID(AC)
   IF (N.TUG.2 > 0) AND (TUG < 4)
     FOR EACH ACE IN TUG.Q
        WITH (AC.DESTINATION(ACE) < 9) AND (AC.LOCATION(ACE) <> 12)
     FIND THE FIRST CASE
     IF FOUND
        REMOVE THIS ACE FROM TUG.Q
          PRINT 1 LINE WITH ACE THUS
AC ** REMOVED FROM TUG.Q
        LET TUG = TUG + 1
        IF AC.DESTINATION(ACE) = 7 DR AC.DESTINATION(ACE) = 8
           LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
           LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
           LET TTRESPOT - NORMAL.F(XSAR,SDEV,2)
          SCHEDULE A SOME.ARRIVAL GIVING ACE IN TTRESPOT MINUTES
        ELSE
           LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
          LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
           LET TTRESPOT = NORMAL.F(XSAR.SDEV.2)
           SCHEDULE AN ACLRESPOTTED GIVING ACE IN TTRESPOT MINUTES
        ALWAYS
     ALMAYS
   ALHAYS
 ELSE "'AC IS GOING TO THE DECK
 PRINT 1 LINE THUS
AC GOING TO DECK HAS ARRIVED AT THE ELEVATOR
     REMOVE THIS AC FROM THE HANGER.DECK
     LET TTARRIV.D = .5 + ((BETA.F(1.5,5.0,7)) + 4.)
     SCHEDULE A DECK.ARRIVAL GIVING AC IN TTARRIV.D MINUTES
 ALHAYS
 RETURN
 END
```

```
EVENT PLIGHT. CHECK GIVEN PLIGHT
DEFINE PLIGHT AS AN INTEGER VARIABLE
  DEFINE DEL, T. CHK AS REAL VARIABLES
  IF M. PLAN(FLIGHT) = 1 " FLIGHT HAS NOT LAUNCHED
  IF PLT.AC.NUM(FLIGHT) > 0
    FOR EACH ACE IN FLT. WAVE(FLIGHT), OD
        PRINT 1 LINE WITH AC.ID(ACE), AC.LOCATION(ACE), AC. PUEL.STAT(ACE),
                         AC.LOAD.STAT(ACE), AC.OP.STAT(ACE),
                         AC.LAUNCH.TIME(ACE), AC.DESTINATION(ACE) THUS
AC se AT se with fuel sise load sise has opistat sise toitime sees dest se
        IF ((AC_LGCATIGN(ACE) < 7) AND (AC_LGESTINATIGN(ACE) = 10))
           IF AC.JP.STAT(ACE) = 1.0
              FILE ACE IN AC.RDY.SET
              FILE ACE IN AC.PRE.ROY.SET
           ALWAYS
        ELSE
           FILE ACE IN AC. NOT. RDY. SET
        ALMAYS
    LOOP
          PRINT 1 LINE WITH N.AC.RDY.SET, N.AC.PRE.ROY.SET,
                           N.AC.NOT.ROY.SET THUS
#ROY AC= ##
              *PRE.RDY AC= **
                                #NOT . RDY AC = **
             FOR EACH FLIGHTE IN THE PLAN, DO
                 PRINT 1 LINE WITH FLT.TIME(FLIGHTE), FLT. AC.TYPE(FLIGHTE).
                                 FLT.AC.RDY(FLIGHTE), FLT.AC.NUM(FLIGHTE),
                                 FLT.DELAY(FLIGHTE) THUS
FLT SCHED AT *** WITH AC.TYPE * HAS * OUT OF * READY...#DELAYS= *
             LOGP
    IF FLT.AC.TYPE(FLIGHT) <> 3 ''AV-8S ALWAYS FLY IN TWO'S
       IF N.AC.ROY.SET <> FLT.AC.NUM(FLIGHT)
          IF (N.AC.RDY.SET+N.AC.PRE.RDY.SET) <> FLT.AC.NUM(FLIGHT)
             ADD 1 TO SPLIT-PLTS
             LET T.FLT = SPLIT.FLTS + NUM.FLTS
             CREATE A FLIGHTE CALLED F(T.FLT)
             IF N.SET.TEMP > 0
                FOR EACH ACE IN SET. TEMP, DO
                    REMOVE THIS ACE FROM SET. TEMP
                LOOP
             ALWAYS
             FOR EACH ACE IN FLT. HAVE(FLIGHT), DO
                 FILE ACE IN SET. TEMP
                 REMOVE THIS ACE FROM PLT. WAVE (PLIGHT)
                 PRINT 1 LINE WITH AC.ID(ACE) THUS
                 AC ** FILES IN SET.TEMP
             LOOP
             FOR EACH ACE IN SET. TEMP. DO
                 IF AC.LOCATION(ACS) > 6
                    FILE THIS AGE IN FLT. WAVE(FCT.FLT))
                    PRINT 1 LINE WITH AC. ID(ACE).
```

<mark>ቘቔፙቔቔዸ፞ቔጜ፞ቔፙቔቔቘጜጜጜጜጜጜጜጜጜፙቔጜጜዄቔ</mark>ጜጜጜጜጜጜጜጜጜጜጜዹጜዹጜዹጜዹጜዹጜዹጜዹጜዹጜዹጜዹጜዹ

```
(FLT.TIME(FLIGHT)+5) THUS
                AC ** IS NOW SCHEDULED TO LAUNCH AT ****
                  ELSE
                     FILE THIS ACE IN FLT. WAVE(FLIGHT)
                     PRINT 1 LINE WITH AC. ID(ACE),
                                        (PLT.TIME(PLIGHT)) THUS
                AC ** SCHEDULED TO LAUNCH AT ****
                  ALWAYS
              L 00P
              LET FLT. NUM(F(T.FLT)) = FLT. NUM(FLIGHT) + .1
              LET FLT.DELAY(F(T.FLT)) = FLT.DELAY(FLIGHT) + 5
              LET PLT.TIME(P(T.FLT)) = PLT.TIME(PLIGHT) + 5
              WHILE PLT.TIME(P(T.FLT)) < TIME.V. DO
                    ADD 5 TO PLT.TIME(P(T.FLT))
                    ADD 5 TO FLT.DELAY(F(T.FLT))
                    ADD .1 TO FLT.NUM(F(T.FLT))
              LOOP
              LET PLT.AC.TYPE(PCT.PLT)) = PLT.AC.TYPE(PLIGHT)
              LET FLT.AC. NUM(F(T.FLT)) = N.FLT.WAYE(F(T.FLT))
              LET FLT.AC.RDY(F(T.FLT)) = 0
              LET FLT. AC. NUM(FLIGHT) = N. FLT. WAYE(FLIGHT)
              PRINT 1 LINE WITH FLT.AG.NUM(FLIGHT),FLT.AC.RDY(FLIGHT) THUS
PLIGHT HAS ## AC, OF WHICH ## ARE READY TO LAUNCH
              IF ((FLT.AC.RDY(FLIGHT) = FLT.AC.NUM(FLIGHT))
                 AND (FLT.AC.NUMCFLIGHT) > 0))
                 SCHEDULE A FLIGHT-LAUNCH GIVING FLIGHT NOW
                 CALL CHECKI SIVING PLIGHT
              ELSE
                 IF FLT.AC.NUM(FLIGHT) = 0
                    REMOVE FLIGHT FROM PLAN
                 ALWAYS
              ALHATS
              LET DEL = (FLT.NUMCF(T.FLT)) - INT.F(FLT.NUMCF(T.FLT))))
              PRINT 1 LINE WITH FLT.NUM(F(T.FLT)).
                                INT.FCFLT.NUMCF(T.FLT))),DEL THUS
                  INT(FLT. NUM) = ***.* DEL = ***.**
              IF DEL < .4
                 FILE P(T.FLT) IN PLAN
                 LET T.CHK=(FLT.TIME(F(T.FLT))+(1.+9ETA.F(1.5,3.0,9)+2.))
                 PRINT 1 LINE WITH T.CHK THUS
F(T.FLT) SCHEDULED FOR FLIGHT.CHECK AT ***.*
                 SCHEDULE A FLIGHT. CHECK GIVING F(T.FLT)) AT T.CHK
              ELSE ""AFTER 4 FLIGHT.CHECKS THERE ARE AC IN THIS FLIGHT STILL N
                 FOR EACH ACE IN FLT. WAVE(F(T.FLT)). 32
                     ADD 1 TO NUM. CANCELLED. MISSIONS
                     FOR EACH FLIGHTE IN THE SCHEDULE
                         FOR I = 1 TO FLT.AC.NUM(FLIGHTE)
                             WITH AC.ID(ACE) = FLTARRAY(FLT.NUM(FLIGHTE),I)
                     FIND THE FIRST CASE
                     IF FOUND
                        LET AC.LAUNCH.TIME(ACE) - PLT.TIME(PLIGHTE)
                     ELSE
                        LET AC.LAUNCH.TIME(ACE) = 9999
                     ALWAYS
                     IF ((AC.LOCATION(ACE) < 9) AND (4.SPOT.Q(ACE) = 1))
                        REMOVE THIS ACE FROM SPCT. 3
                     ALWATS
```

IF M.BONE.FHO(ACE) = 1REMOVE THIS ACE FROM BONE. FWO FILE THIS ACE IN BONE. FUD ALWAYS IF M.BONE.AFT(ACE) = 1 REMOVE THIS ACE FROM BONE. AFT FILE THIS ACE IN BONE.AFT AL WAY S IF ((AC.DESTINATIONCACE) < 7) ""NEED TO CANCEL RESPOT AND (AC.LOCATION(ACE) < 9>) ""FOR AC ON DECK FOR EACH AC.RESPOTTED IN EV.S(I.AC.RESPOTTED) WITH AC3 = ACE, DB CANCEL AC. RESPOTTED PRINT 1 LINE WITH AC. IDCACE), TIME. V THUS AC.RESPOTTED EVENT FOR AC ** WAS CANCELLED AT ****.* LODP LET SPOT(AC.DESTINATION(ACE)) = 0 ADD. 1 TO NUM. OPEN. SPOTS SCHEDULE A SPOT-OPEN NOW ALWAYS PRINT 1 LINE WITH AC. IDCACED, AC. LAUNCH. TIMECACED THUS AC ** S STICK IN THIS PLIGHT IS CANCELLED...NEXT LAUNCH.TIME IS *** LOOP FOR EACH PLIGHTE IN PLAN WITH (FLT.TIME(FLIGHT) = FLT.TIME(FLIGHTE)) AND (FLT. NUM(FLIGHT) = FLT. NUM(FLIGHTE)) FIND THE FIRST CASE IF FOUND REMOVE THIS FLIGHTE FROM PLAN ELSE PRINT 1 LINE THUS " ERROR OF PLIGHT NOT FOUND IN PLAN ALWAYS IF ((N.PLAN = 0) AND (N.SCHEDULE = 0)) SCHEDULE A STOP.SIMULATION IN 160 MINUTES PRINT I LINE WITH TIME.V. (TIME.V+160) THUS AT **** A STOP SIMULATION WAS SCHEDULED FOR TIME = **** *** ALMAYS ALWAYS SCHEDULE A FLIGHT. CHECK GIVING FLIGHT IN (1. + BETA.F(1.5,3.0,9) + 2.) MINUTES ELSE " ALL AC ARE IN FINAL SERVICE... WAIT PRINT I LINE THUS ALL AC ARE IN FINAL SERVICE ON DECK SPOTS... WAIT FOR COMPLETION SCHEDULE A FLIGHT. CHECK GIVING FLIGHT IN (1. + BETA.F(1.5,3.0,9) * 2.) MINUTES ELSE " ALL AC ARE READY ... LAUNCH IS IMMINENT PRINT 1 LINE THUS ALL AC ARE READY ... LAUNCH IS IMMINENT

..

. . . .

. .

. .

. .

. .

. .

ALWAYS

ELSE "'AV3 PLT IS LATE

ALHAYS

IN (1. + BETA.#(1.5+3.0+9) + 2.) MINUTES

SCHEDULE A FLIGHT-CHECK SIVING FLIGHT

```
PRINT 1 LINE THUS THIS AVE #LIGHT IS LATE
        ADD 2 TO FLT.DELAY(FLIGHT)
       IF((N.AC.RDY-SET <> FLT.AC.NUM(FLIGHT))
            DR (FLT.DELAY(FLIGHT) > 14))
        IF FLT. DELAY(FLIGHT) >= 10 "CANCEL THIS FLIGHT
           ADD 2 TO NUM-CANCELLED-MISSIONS
           FOR EACH ACE IN FLT. WAVE(FLIGHT), DO
                FOR EACH FLIGHTE IN THE SCHEDULE
                    FOR I = 1 TO FLT.AC.NUM(FLIGHTE)
                        WITH AC.ID(ACE) = FLTARRAY(FLT.NUM(FLIGHTE),I)
                FIND THE FIRST CASE
                IF FOUND
                   LET AC.LAUNCH.TIME(ACE) = FLT.TIME(FLIGHTE)
                   LET AC.LAUNCH.TIME(ACE) = 9999
                ALWAYS
                IF (CAC.LOCATION(ACE) < 9) AND (M.SPOT.Q(ACE) = 1))
                   REMOVE THIS ACE FROM SPOT.Q
                ALWAYS
                IF M.BONE.AFT(ACE) = 1
                   REMOVE THIS ACE FROM BONE.AFT
                   FILE THIS ACE IN BONE.AFT
                ALWAYS
                IF ((AC.DESTINATION(ACE) < 7) "NEED TO CANCEL RESPOT
                   AND (AC.LOCATION(ACE) < 9)) "FOR AC ON DECK
FOR EACH AC.RESPOTTED IN EV.S(I_AC.RESPOTTED)
                       WITH AC3 = ACE, DC
                       CANCEL AC.RESPOTTED
                       PRINT 1 LINE WITH AC.ID(ACE), TIME.V THUS
       AC. RESPOTTED EVENT FOR AC ** HAS CANCELLED AT ****.*
                   LOOP
                   LET SPOT(AC.DESTINATION(ACE)) = 0
                   ADD 1 TO NUM. OPEN. SPOTS
                   SCHEDULE A SPOT-OPEN NOW
                ALWAYS
                IF AC.LOCATION(ACE) < 7 "NEED TO RESPOT AV8S BACK TO BONE
                   SUBTRACT 1 FROM NUM. AV8. RDY
                   LET AC.DESTINATION(ACE) = 8
                   LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                   LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
                   LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                   SCHEDULE A BONE. ARRIVAL GIVING ACE
                            IN TTRESPOT MINUTES
                   FILE ACE IN BONE.AFT
                ALWAYS
                PRINT 1 LINE WITH AC.ID(ACE), AC.LAUNCH.TIME(ACE) THUS
AC *** S STICK IN THIS FLIGHT IS CANCELLED...NEXT LAUNCH.TIME IS ***
           LOGP
            FOR EACH FLIGHTE IN PLAN
                WITH (FLT.TIME(FLIGHT) = FLT.TIME(FLIGHTE))
                      AND (FLT.NUM(FLIGHT) = FLT.NUM(FLIGHTE))
            FIND THE FIRST CASE
            IF FOUND
               REMOVE THIS FLIGHTE FROM PLAN
```

```
REMOVE THIS FLIGHTE FROM AV8.PLAN
           ELSE
              PRINT 1 LINE THUS
              ##ERROR## FLIGHT NOT FOUND IN PLAN
           ALWAYS
           IF ((N.PLAN = 0) AND (N.SCHEDULE = 0))
              SCHEDULE A STOP-SIMULATION IN 160 MINUTES
              PRINT 1 LINE WITH TIME.V. (TIME.V+160) THUS
      AT **** ** A STOP SIMULATION WAS SCHEDULED FOR TIME = **** **
           ALWAYS
       ELSE
           SCHEDULE A FLIGHT. CHECK GIVING FLIGHT IN 2 MINUTES
       ALHAYS
       EL S E
          SCHEDULE A FLIGHT. CHECK GIVING FLIGHT IN 2 MINUTES
          PRINT 1 LINE THUS
ALL AV8-'S ARE ON DECK AND READY TO LAUNCH...
       ALHAYS
     ALWAYS
     FOR EACH ACE IN AC.RDY.SET, DO
         REMOVE ACE FROM AC. RDY. SET
     FOR EACH ACE IN AC.PRE.RDY.SET, DO
         REMOVE ACE FROM AC.PRE.RDY.SET
     FOR EACH ACE IN AC.NOT.RDY.SET, DO
         REMOVE ACE FROM AC.NOT.RDY.SET
    LOOP
  ELSE
     IF M.PLAN(FLIGHT) = 1
       REMOVE THIS FLIGHT FROM PLAN
     ALWAYS
   ALWAYS
  ELSE **FLIGHT HAS LAUNCHED
     PRINT 1 LINE THUS
THIS FLIGHT HAS LAUNCHED
  ALWAYS
RETURN
```

END

```
EVENT FLIGHT. LAUNCH GIVEN FLIGHT
DEFINE INTERVAL, T.FLT.NUM AS REAL VARIABLES
 DEFINE FLIGHT AS INTEGER VARIABLES
 LET INTERVAL = UNIFORM.F(.5,1.,5)
 PRINT 1 LINE WITH INTERVAL, LAST. LAUNCH. TIME, LAST. RECOVERY. TIME THUS
              LAST-LAUNCH-TIME= ****.* LAST-REC-TIME= ****.*
INTERVALE **.*
  IF TIME. V + INTERVAL < MAX.F((LAST.LAUNCH.TIME + 1.),
                             (LAST.RECOVERY.TIME + 1.))
    LET INTERVAL = MAX.F((LAST.LAUNCH.TIME - TIME.V + 1.),
                        (LAST.RECOVERY.TIME - TIME.V + 1.))
 ALHAYS
 LET T.FLT.NUM = INT.F(FLT.NUM(FLIGHT))
 IF FLT_AC_TYPE(FLIGHT) = 3
    FOR EACH ACE IN FLT.WAVE(FLIGHT). DO
       IF AC.LOCATION(ACE) < 7
          PRINT 1 LINE WITH TIME. V, AC. ID (ACE), INTERVAL THUS
          TIME: *** AC ** WILL LAUNCH IN *.** MINUTES
          SCHEDULE AN ACLAUNCHED GIVING ACE, T.FLT. NUM IN INTERVAL MINUTES
          LET LAST.LAUNCH.TIME = TIME.V + INTERVAL
          REMOVE THIS ACE FROM FLT.WAVE(FLIGHT)
          ADD UNIFORM.F(.3,.7,5) TO INTERVAL
       ELSE
          PRINT 1 LINE WITH AC.ID(ACE) THUS
AC ** WAS LAUNCHED EARLIER...DURING AN EMERGENCY RECOVERY...
       ALWAYS
    LOOP
    SCHEDULE A SPOT-OPEN IN INTERVAL MINUTES
    FOR EACH FLIGHTE IN AV8.PLAN
       WITH FLT.TIME(FLIGHT) = FLT.TIME(FLIGHTE)
    FIND THE FIRST CASE
    IF FOUND
       REMOVE THIS FLIGHTE FROM AV8.PLAN
    ELSE
       PRINT 1 LINE THUS
       ##ERROR ## FLIGHT NOT FOUND IN PLAN (AV8)
    ALWAYS
  ELSE
    IF N.SET.TEMP > 0
       FOR EACH ACE IN SET. TEMP. OO
           REMOVE THIS ACE FROM SET. TEMP
       LBOP
    ALHAYS
    FOR EACH ACE IN FLT.WAVE(FLIGHT), DO
        FILE ACE IN SET.TEMP
        REMOVE THIS ACE FROM FLT. WAVE(FLIGHT)
    LOGP
    FOR EACH ACE IN SET.TEMP, DO
       FILE ACE IN FLT.WAVE(FLIGHT)
    LJOP
```

```
FOR EACH ACE IN FLT. WAVE(FLIGHT), DO
        IF AC.LOCATION(ACE) < 7
           PRINT 1 LINE WITH TIME.V,AC.ID(ACE), INTERVAL THUS
           TIME: *** AC ** WILL LAUNCH IN *.** MINUTES
           SCHEDULE AN AC-LAUNCHED GIVING ACE, T.FLT. NUM IN INTERVAL MINUTES
           LET LAST.LAUNCH.TIME = TIME.V + INTERVAL
           REMOVE THIS ACE FROM FLT. WAVE(FLIGHT)
           ADD UNIFORM.FC.3,.7,5) TO INTERVAL
           IF INTERVAL > 10.0
              PRINT 1 LINE WITH INTERVAL THUS
     ##ERROR## INTERVAL = ***
              PRINT 1 LINE WITH N. SET. TEMP, N. FLT. WAVE(FLIGHT) THUS
                                      #IN FLT.WAVE = ****
              #IN SET.TEMP = ****
              SCHEDULE A STOP-SIMULATION NOW
              RETURN
           ALWAYS
           PRINT 1 LINE WITH AC.ID(ACE) THUS
AC ** WAS LAUNCHED EARLIER...DURING AN EMERGENCY RECOVERY...
       AL WAYS
     LOOP
     SCHEDULE A SPOT-OPEN IN INTERVAL MINUTES
 ALWAYS
 FOR EACH FLIGHTE IN PLAN
     WITH (FLT.TIME(FLIGHT) = FLT.TIME(FLIGHTE))
        AND (FLT.NUM(FLIGHT) = FLT.NUM(FLIGHTE))
 FIND THE FIRST CASE
 IF FOUND
     REMOVE THIS FLIGHTE FROM PLAN
 ELSE
    PRINT 1 LINE THUS
     *#ERROR## FLIGHT NOT FOUND IN PLAN
 ALHAYS
  FOR EACH FLIGHTE IN THE PLAN. DO
      FOR EACH ACE IN FLT. WAVE(FLIGHTE), DO
          PRINT 1 LINE WITH FLT.TIME(FLIGHTE), AC.ID(ACE),
                AC.LOCATION(ACE), AC.DESTINATION(ACE) THUS
FLIGHT *** IS IN PLAN AND HAS AC ** AT LOCATION ** WITH DEST **
     LOOP
 LOGP
  IF ((N.PLAN = 0) AND (N.SCHEDULE = 0))
     SCHEDULE A STOP. SIMULATION IN 160 MINUTES
     PRINT 1 LINE WITH TIME.V. (TIME.V+160) THUS
AT ****.** A STOP SIMULATION WAS SCHEDULED FOR TIME = ****.**
  ALWAYS
  RETURN
 END
```

```
EVENT HANGER.ARRIVAL GIVEN AC
DEFINE AC AS INTEGER VARIABLES
  IF AC.TYPE(AC) = 2
    ADD 1.5 TO HANGER.EQUIV
    ADD 1.0 TO HANGER-EQUIV
  ALHAYS
  PRINT 1 LINE WITH HANGER. EQUIV THUS
HANGER.EQUIY = **.*
  FILE AC IN HANGER-DECK
PRINT 1 LINE WITH AC THUS
AC ** FILED IN HANGER
 LET AC.LOCATION(AC) = 12
 LET SPOT(11) = 0
  IF N. ELEVATOR.Q > Q
    REMOVE THE FIRST ACE FROM ELEVATOR .Q
    IF AC.DESTINATION(ACE) = 12
       IF (HANGER.EQUIV + 1) < (MAX.HANGER.EQUIV)
          LET SPOT(11) = -AC.ID(ACE)
          IF TUG < 4
             ADD 1 TO TUG
             LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
             LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
             LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
             SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                     IN TTARRIV.E MINUTES
            PRINT 1 LINE WITH ACE, TTARRIV. E THUS
AC ** SCHEDULED TO ARRIVE AT THE ELEVATOR IN ***.* MINUTES
          ELSE
             FILE ACE IN TUG.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG.Q
          ALWAYS
       ELSE
          IF M.ELEVATOR.Q(ACE) <> 1
             FILE ACE IN ELEVATOR.Q
          ALWAYS
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.O
          FOR EACH ACE IN ELEVATOR.Q
             WITH AC.DESTINATION(ACE) < 12
          FIND THE FIRST CASE
          IF FOUND
             REMOVE THIS ACE FROM ELEVATOR.Q
             LET SPOT(11) = -AC. [D(ACE)
             LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
             LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
             LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)
             SCHEDULE AN ELEVATOR ARRIVAL GIVING ACE
                     IN TTARRIV.E MINUTES
             PRINT 1 LINE WITH ACE, TTARRIV. E THUS
 ACE ** SCHEDULED TO ARRIVE AT THE ELEVATOR IN ***.* MINUTES
          ALHAYS
       AL JAYS
    ELSE
```

```
LET SPOT(11) = -AC.ID(ACE)

LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))

LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))

LET TTARRIV.E = NORMAL.F(XBAR, SDEV, 8)

SCHEDULE AN ELEVATOR.ARRIVAL GIVING ACE IN TTARRIV.E MINUTES

PRINT 1 LINE WITH ACE, TTARRIV.E THUS

AC ** SCHEDULED TO ARRIVE AT THE ELEVATOR IN ***.* MINUTES

ALWAYS

ALWAYS

RETURN
END
```

```
EVENT SPOT. EMERGENCY GIVEN AC
DEFINE SPOTT, AC, ACE, MAX.LAUNCH.TIME, MIN.LAUNCH.TIME, AC. MIN, AC.ROY,
 ACE.P. ACE.T. FLIGHTE.P. FLAG. AND AC.MAX AS INTEGER VARIABLES DEFINE INTERVAL, TTRECOVER, T.FLT.NUM AS REAL VARIABLES
 PRINT 1 LINE WITH TIME.V, EVENT.V, AC. ID(AC), AC.PRIDRITY(AC),
                  AC.FUEL.STAT(AC) THUS
T **** ** E ** AC ** W PRI *.** FUEL *.*** REQUESTED EMERGENCY LANDING
 IF M.SPOT.Q(AC) = 1 . OTHERWISE AC ALREADY HAS A RECOVERY DESTINATION
    IF NUM-OPEN-SPOTS > 0
       FOR I BACK FROM 6 TO 1 BY 1
         WITH SPOT(I) = 0.
       FIND THE FIRST CASE
       IF FOUND
         LET SPOTT = I
       ELSE
         LET SPOTT = 0
         PRINT 1 LINE THUS
          OPEN SPOT NOT FOUND
## ERROR ##
       AL HAYS
    ALWAYS
    IF I <> 0
       PRINT 1 LINE WITH EVENT.V. NUM. OPEN.SPOTS, SPCTT THUS
EVENT ** #OPEN SPOTS ** OPEN SPOT * IF
       SUBTRACT I FROM NUM-OPEN-SPOTS
```

```
.PRINT 1 LINE WITH NUM-OPEN-SPOTS THUS
    NUM.OPEN.SPOTS = **
 ELSE
    LET FLAG = 0
    FOR I BACK FROM 6 TO 1 BY 1
       WHILE FLAG = 0. DO
       LET SPOTT = I
        IF SPOT(SPOTT) < 0
           FOR EACH ACE IN THE SHIP
              WITH AC.ID(ACS) = SPOT(SPOTT)
           FIND THE FIRST CASE
           IF FOUND
              PRINT 1 LINE WITH AC. ID(ACE), AC. LOCATION (ACE),
                                AC. FUEL.STAT (ACE), SPOTT THUS
                                        SPOTT= ##
               WITH FUEL ****
              IF ((AC.LOCATION(ACE) < 9) OR (AC.FUEL.STAT(ACE) > .5))
                 PRINT 1 LINE WITH ACE, SPOTT THUS
AC ** WILL ABORT MOVEMENT TO SPOT **
                 LET FLAG = 1
                 PRINT 1 LINE WITH EVENT. V, NUM. SPEN. SPOTS. SPOTT THUS
                 EVENT ** #GPEN SPOTS ** OPEN SPOT * ELSE
                 FOR EACH ACE IN THE SHIP.
```

```
WITH AC.ID(ACE) = ABS.F(SPOT(SPOTT))
                    FIND THE FIRST CASE
                     PRINT 1 LINE WITH AC.ID(ACE), AC.LOCATION (ACE), SPOTT THUS
                        AC ** IN TRANSIT FROM ** TO ** MUST BE DISPLACED
                     IF AC.LOCATION(ACE) = 9
                        FOR EACH AC.RECOVERED IN EV.S(I.AC.RECOVERED)
                          WITH AC2 = ACE, DB
                           CANCEL AC.RECOVERED
                       LOGP
                    ELSE
                        FOR EACH AC.RESPOTTED IN EV.S(I.AC.RESPOTTED)
                           WITH AC3 = ACE, DO
                           CANCEL AC.RESPOTTED
                       LOOP
                    ALWAYS
                    FILE ACE IN SPOT.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPOT-Q
                 ALWAYS
              ALWAYS
           ELSE
              FOR EACH ACE IN THE SHIP
                  WITH AC.ID(ACE) = ABS.F(SPOT(SPOTT))
              FIND THE FIRST CASE
              IF FOUND
                 IF (AC.DESTINATION(ACE) = 7) OR
                               (AC.DESTINATION(ACE) = 8)
                    LET FLAG = 2
                    PRINT 1 LINE WITH AC. ID(ACE) THUS
           AC ** IS IN TRANSIT TO THE BONE...WILL TAKE THIS SPOT FOR THE EMERC
                    IF M.TUG.Q(ACE) = 1
                        ADD 1 TO TUG
                       LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                       LET SDEY = S.TTRESPOT.4C(AC.TYPE(ACE))
                       LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                        SCHEDULE A BUNE.ARRIVAL GIVING ACE
                                 IN TTRESPOT MINUTES
                       REMOVE ACE FROM TUG.Q
           PRINT 1 LINE WITH ACE THUS
AC ** REMOVED FROM TUG.Q
                    ALWAYS
                 ALWAYS
              ALHAYS
           ALWAYS
         LOOP
         IF PLAG = 0
         **ALL SPOTS CURRENTLY HAVE AN AC ON THEM..NEED TO LAUNCH OR RESPOT AC
           PRINT 1 LINE WITH AC.ID(AC) THUS
   MUST LAUNCH OR RESPOT AIRCRAFT TO ACCOMODATE AC ** EMERGENCY
           LET MIN-LAUNCH.TIME = 9999
           LET MAX.LAUNCH.TIME = 0
           LET AC.MIN = 0
           LET AC.MAX = 0
LET AC.RDY = 0
           FOR I BACK FROM 6 TO 1 BY 1, DO
              FOR EACH ACE IN THE SHIP
                 WITH AC.ID(ACE) = SPOT(I)
              FIND THE FIRST CASE
              IF FOUND
                 IF ((AC.LAUNCH.TIME(ACE) > MAX.LAUNCH.TIME)
```

```
AND (AC.TYPE(ACE) <> 3))
                    LET AC. HAX = ACE
                    LET MAX.LAUNCH.TIME = AC.LAUNCH.TIME(ACE)
                 ALWAYS
                 IF ((AC.LAUNCH.TIME(ACE) < MIN.LAUNCH.TIME) AND
                          (AC.TYPECACE) <> 3) AND
                          (AC-OP-STAT(ACE) > -65) AND
                          ( AC.FUEL.STAT(ACE) > .5))
                    LET AC.MIN - ACE
                    LET MIN.LAUNCH.TIME = AC.LAUNCH.TIME(ACE)
                 ALWAYS
                 IF ((AC.FUEL.STAT(ACE)=1.)AND(AC.LDAD.STAT(ACE)= 1.)
                      AND (AC.RDY = 0) AND (AC.TYPE(ACE) <> 3))
                    LET AC.RDY - ACE
                 ALWAYS
                 PRINT 1 LINE WITH I.AC.ID(ACE), AC.MIN.AC. MAX THUS
        AC
                  AC.HIN ****
                                   AC. MAX
              ELSE
                 PRINT 1 LINE WITH I, SPOT(I), AC. MIN, AC. MAX THUS
            AC
               AC.MIN ****
                                       AC. MAX
              ALHAYS
           LOGP
            IF ((AC.RDY <> 0) AND (AC.LOAD.STAT(AC.MIN) < 1.))
               LET AC.MIN = AC.RDY
            ALHAYS
            IF (AC.MIN <> 0) AND (AC.TYPE(AC.MIN) < 3)
              LET SPOTT = AC.LOCATION(AC.MIN)
              PRINT 1 LINE WITH AC. ID(AC. MIN), SPOTT THUS
AC ** WILL LAUNCH IMMEDIATELY FROM SPOT * FOR THE EMERGENCY RECOVERY
              LET SPOT(SPOTT) = 0
              IF AC-LOAD-STAT(AC-MIN) = 1.0
                 FOR EACH FLIGHTE IN PLAN
                     FOR EACH ACE IN FLT. WAVE(FLIGHTE)
                         WITH ACE = AC.MIN
                 FIND THE FIRST CASE
                 IF FOUND
                    REMOVE AC.MIN PROM PLT.WAVE(FLIGHTE)
                    SUBTRACT 1 FROM FLT.AC.ROY(FLIGHTE)
                    SUBTRACT 1 FROM FLT.AC.NUM(FLIGHTE)
                    LET T.FLT.NUM = INT.F(FLT.NUM(FLIGHTE))
                    SCHEDULE AN AC.LAUNCHED GIVING AC.MIN, T.FLT.NUM
                             IN UNIFORM.F(.5,1.,5) MINUTES
                    PRINT 1 LINE WITH AC. ID(AC. MIN) THUS
AC ** SCHEDULED TO LAUNCH IN .5-1 MINUTES
                    PRINT 1 LINE THUS
**ERROR** FLIGHT NOT FOUND IN PLAN
                 ALWAYS
              ELSE
                 LET AC.FUEL.STAT(AC.MIN) = AC.FUEL.STAT(AC.MIN) - .02 ""SINCE
                 LET AC.PRIGRITY(AC.MIN) = 1 - AC.FUEL.STAT(AC.MIN) + .2 **WI
                 LET AC.LOCATION(AC.MIN) = 10
                 LET AC.DESTINATION(AC.MIN) = 9
                 LET ETA(AC.ID(AC.MIN)) = 1 + TIME.V
                 LET AC.OP.STAT(AC.MIN) = AC.OP.STAT(AC.MIN) + .2
                                                                    **FOR LOAD
                 SCHEDULE A DELTALARRIVAL GIVING AC.MIN
                                                                     "" WHEN AC."
                             IN UNIFORM.F(1.,2.,6) MINUTES
              ALWAYS
              LET ACE = AC.MIN
            ELSE
```

```
LET SPOTT = AC.LOCATION(AC.MAY)
              PRINT 1 LINE WITH AC.ID(AC.MAX), SPOTT THUS
AC 🗪 WILL RESPOT IMMEDIATELY FROM SPOT + FOR THE EMERGENCY RECOVERY
              LET SPOT(SPOTT) = 0
              IF AC. TYPE(AC. MAX) # 1
                 LET AC.DESTINATION(AC.MAX) = 7
                 FILE AC.MAX IN BONE.FUO
                 LET AC.DESTINATION(AC.MAX) = 8
                 FILE AC. MAX IN SOME.AFT
              ALWAYS
              PRINT 1 LINE WITH N. BOME. PWO, N. BOME. AFT THUS
N. BONE.FWD = **
                   N.BONE.AFT=
              LET ABAR = TTRESPOT.AC(AC.TYPE(AC.MAX))
              LET SDEY = S.TTRESPOT.AC(AC.TYPE(AC.MAX))
              LET TTRESPOT = MORMAL.F(XBAR, SOEV, 2)
              SCHEDULE A BONE. ARRIVAL GIVING AC. MAX IN THRESPOT MINUTES
              LET ACE - AC.MAX
              ADD 1 TO TUG
            ALWAYS
            IF AC.SERVICE.FLAG(ACE) = 1
               IF AC. FUEL. STAT(ACE) < 1.
                                          ""AVBS NEVER ENTER THIS SECTION
                  FOR EACH AC.REPUELED IN EV.S(I.AC.REPUELED)
                      WITH ACS = ACE. DO
                      CANCEL AC.REPUBLED
                      PRINT 1 LINE WITH ACE THUS
AC.REFUELED EVENT SCHEDULED FOR AC # HAS BEEN CANCELLED
                      SUBTRACT 1 FROM REPUELER
                  LOGP
               ALWAYS
               IF AC.LOAD.STAT(ACE) < 1.
                  FOR EACH AC.LOADED IN EV.S(I.AC.LOADED)
                      with AC4 = ACE, DO
                      CANCEL AC.LDADED
                      PRINT 1 LINE WITH ACE THUS
AC.LGADED EVENT SCHEDULED FOR AC ** MAS BEEN CANCELLED
                  LOOP
               ALWAYS
               LET AC.SERVICE.FLAG(ACE) = 0
            ALHAYS
            IF M.TUG.Q(ACE) = 1
               G.DUT HORF SOA SHIT BYDNES
           PRINT I LIME WITH ACE THUS
AC ** REMOVED FROM TUG.Q
            ALMAYS
            IF M.SPOT. Q(ACE) = 1
               REMOVE THIS ACE FROM SPOT.Q
            ALHAYS
            IF M.ELEVATOR.Q(ACE) = 1
               REMOVE THIS ACE FROM ELEVATOR.Q
            ALHAYS
            IF M.REFUELER.Q(ACE) = I
               REMOVE THIS ACE FROM REFUELER.Q
            ALHAYS
PRINT 1 LINE WITH AC. ID(AC). AC. ID(ACE) THUS
AC = ##
            IF (AC.FUEL.STAT(AC) < .25) AND (AC.TYPE(AC) = AC.TYPE(ACE)) "'SW
```

(0.1 <> (BOA) TATE (CACL. DA) OFA

IF AC.LAUMCH.TIME(ACE) < AC.LAUNCH.TIME(AC)
FOR EACH MLIGHTE IN PLAN
WITH MLT.TIME(MLIGHTE) = AC.LAUNCH.TIME(ACE)
FIND THE MIRST CASE
IF MOUND

PRINT 1 LINE WITH FLT.TIME(FLIGHTE).
N.FLT.WAVE(FLIGHTE) THUS

BAC IN FLIGHT SCHED FOR **** IS **

FOR EACH ACE.P IN PLT. WAVE (PLIGHTE), DO

PRINT 1 LINE WITH AC. IDCACE.P), AC. LAUNCH.TIME(ACE.P) THU!

AC ** IS SCHED TO LAUNCH AT ****
LODP

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS AC = ** ACE = **

REMOVE ACE FROM FLT.WAVE(FLIGHTE)
LET AC.LAUNCH.TIME(ACE) = AC.LAUNCH.TIME(AC)
LET AC.LAUNCH.TIME(AC) = FLT.TIME(FLIGHTE)

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS AC = ** ACE = **

PRINT 1 LINE WITH FLT.TIME(FLIGHTE),
N.FLT.WAVE(FLIGHTE) THUS

MAC IN FLIGHT SCHED FOR *** IS **

FOR EACH ACE. P IN FLT. WAVE(FLIGHTE), DD

PRINT 1 LINE WITH AC. ID(ACE.P), AC. LAUNCH. TIME(ACE. P) THU'

AC ** IS SCHED TO LAUNCH AT ****

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS AC = ** ACS = **

ALWAYS

IF AC.LAUNCH.TIME(ACE) < 9999 FOR EACH FLIGHTE.P IN PLAN

WITH FLT. TIME (FLIGHTE. P) = AC. LAUNCH. TIME (ACE)

FIND THE FIRST CASE IF FOUND

PRINT 1 LINE WITH AC. ID(AC), AC. ID(ACE) THUS

AC = ** ACE = **

PRINT 1 LINE WITH FLT.TIME(FLIGHTE.P).

N. FLT. WAVE(FLIGHTE. P) THUS

MAC IN MLIGHT SCHED FOR **** IS **

FOR EACH ACE.P IN FLT.WAVE(FLIGHTE.P), DO

PRINT 1 LINE WITH AC. ID(ACE.P), AC. LAUNCH. TIME(ACE. P) THU!

AC ** IS SCHED TO LAUNCH AT ****

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS

AC = ** AC5 = **

REMOVE AC FROM FLT.WAVE(FLIGHTE.P)
FILE ACE IN FLT.WAVE(FLIGHTE.P)

PRINT 1 LINE WITH FLT.TIME(FLIGHTE.P).

N. FLT. WAVE(FLIGHTE. P) THUS

#AC IN FLIGHT SCHED FOR *** IS **

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS ACE . ** FOR EACH ACE.P IN PLT.WAVE(PLIGHTE.P), DO PRINT 1 LINE WITH AC.ID(ACE.P).AC.LAUNCH.TIME(ACE.P) THUS AC ** IS SCHED TO LAUNCH AT *** ALHAYS ALWAYS FILE AC IN FLT.WAVE(FLIGHTE) PRINT 1 LINE WITH PLT.TIME(PLIGHTE), N. FLT. WAVE(FLIGHTE) THUS SAC IN FLIGHT SCHED FOR *** IS ** FOR EACH ACE.P IN PLT.WAVE(PLIGHTE), DO PRINT 1 LINE WITH AC.ID(ACE.P), AC.LAUNCH.TIME(ACE.P) THU' AC ** IS SCHED TO LAUNCH AT **** PRINT 1 LINE WITH AC. IDCAC), AC. IDCACED THUS ACE - ++ ALWAYS ALWAYS ALHAYS ALWAYS LET AC.DESTINATION(AC) = SPOTT LET SPOT(SPOTT) = - AC.ID(AC) REMOVE THIS AC FROM DELTA. PATTERN REMOVE THIS AC FROM SPOT-Q LET XBAR = TTRECOVER.ACCAC.TYPE(AC)) LET SOEY = S.TTRECOVER.AC(AC.TYPE(AC)) LET TTRECOVER = NORMAL.F(XBAR,SDEV,1) IF TTRECOVER < (LAST.RECOVERY.TIME + .5 - TIME.V) LET TTRECOVER = LAST.RECOVERY.TIME + .5 - TIME.V ALWAYS IF TTRECOVER < (LAST.LAUNCH.TIME + 2 - TIME.V) LET TTRECOVER = LAST.LAUNCH.TIME + 2 - TIME.V ALWAYS LET LAST.RECOVERY.TIME . TTRECOVER + TIME.V SCHEDULE AN AC.RECOVERED GIVING AC IN TTRECOVER MINUTES ADD 1 TO NUM. EMERGENCY. RECOVERIES PRINT 1 LINE WITH AC.ID(AC).SPOTT.TTRECOVER THUS AC ** WILL RECOVER TO SPOT ** IN ***.* MINUTES FOR EACH ACE IN DELTA-PATTERN, DO PRINT 1 LINE WITH AC.ID(ACE), AC.PRIORITY(ACE), AC. DESTINATION (ACE) THUS AC ** WITH PRIGRITY **.*** HAS DEST ** LJOP FOR EACH ACE IN DELTA.PATTERN WITH ((AC.PRIDRITY(ACE) > EMERGENCY.STAT.AC(AC.TYPE(ACE))) AND (AC.DESTINATION(ACE) = 9)), FIND THE FIRST CASE IF FOUND SCHEDULE A SPOT-EMERGENCY GIVING ACE IN .25 MINUTES PRINT 1 LINE WITH ACE, TIME. V THUS AC ** DECLARES EMERGENCY AT ****. ** ALWAYS

FILE AC IN DELTA.PATTERN

PRINT 1 LINE WITH AC.ID(AC) THUS
AC ** MAS ALREADY BEEN ASSIGNED A RECOVERY SPOT
ALWAYS
RETURN
END

```
******************************
EVENT SPOT. SPEN
DEFINE SPOTT, FLAG, AC, ACE.T AS INTEGER VARIABLES
 DEFINE INTERVAL.TTRECOVER AS REAL VARIABLES
    THIS SECTION OF CODE UPDATES THE FUEL AND PRIORITY STATUS VARIABLES OF
** THE AIRCRAFT IN THE DELTA PATTERN IF THE LAST UPDATE TIME WAS MORE THAN
" 10 MINUTES AGD.
 LET J = 0
 FOR I BACK FROM 6 TO 1 BY 1, OD
    IF SPST(I) = 0
       ADD 1 TO J
    ALWAY S
 LOOP
 IF J <> NUM. DPEN. SPOTS
    PRINT 1 LINE WITH TIME.V. FRANCE, V. J. NUM. OPEN.SPOTS THUS
e# = CTC90.MUK ## J = # THEVE ##.#### : THEVESPE ##
 ALWAYS
 LET FLAG . 0
 PRINT 1 LINE WITH NUM-OPEN-SPOTS, DELTA-UPDATE.TIME.
                  N. DELTA. PATTERN. N. SPOT.Q THUS
#### #DELTA #### #DELTA #### #DELTA AC= ## N.SPOT.Q = ##
 IF N.DELTA.PATTERN > 0
    FOR EACH ACE IN DELTA.PATTERN, DO
        LET DELTA = ((TIME.V - DELTA.UPDATE.TIME)/60) +
                              (FUELUSE-ACCAC.TYPECACE)))
       LET AC. FUEL.STAT(ACE) = AC. FUEL.STAT(ACE) - DELTA
       LET AC.FLYING.TIME(ACE) = (AC.FUEL.STAT(ACE)
                            / FUELUSE.AC(AC.TYPE(ACE))) + 60.
       LET AC.PRIDRITY(ACE) = AC.PRIDRITY(ACE) + DELTA = .2
PRINT 1 LINE WITH AC. ID(ACE), AC. DESTINATION (ACE), AC. PRIORITY (ACE),
                 AC.FUEL.STAT(ACE), AC.FLYING.TIME(ACE)
                                                       ZUHT
AC ** WITH DEST ** HAS PRIGRITY *.** FUEL.STAT *.** FLYING.TIME ***.*
       REMOVE THIS ACE FROM THE DELTA.PATTERN
       FILE THIS ACE IN THE DELTA.PATTERN
    Lage
    LET DELTA. UPDATE. TIME = TIME. V
    FOR EACH ACE IN DELTA.PATTERN,
        WITH (AC.PRIDRITY(ACE) > EMERGENCY.STAT.AC(AC.TYPE(ACE)))
             AND (AC.DESTINATION(ACE) = 9)
    FIND THE FIRST CASE
    IF FOUND
       SCHEDULE A SPOT. EMERGENCY GIVING ACE IN .25 MINUTES
       PRINT 1 LINE WITH AC.ID(ACE).TIME.V THUS
AC ** DECLARES EMERGENCY AT ****. **
       LET FLAG = 1
    ELSE
       FOR EACH ACE IN DELTA.PATTERN.
           WITH (AC.PRIDRITY(ACE) > PRIDRITY.STAT.AC(AC.TYPE(ACE)))
                AND (AC.DESTINATION(ACE) = 9)
       FIND THE FIRST CASE
       IF FOUND
          SCHEDULE A SPOT-PRIDRITY GIVING ACE IN 1 MINUTE
          PRINT 1 LINE WITH AC.ID(ACE), TIME.V THUS
AC ** DECLARES PRIDRITY AT ****.**
          LET FLAG = 1
```

```
ALJAYS
    ALWAYS
 ALJAYS
 IF FLAG = 0
    LET INTERVAL = 0
    LET I = 7
    FOR EACH ACE IN SPOT.Q. DO
         IF AC. LOCATION (ACE) = 9
            LET INDEX(AC.ID(ACE)) = 8
           LET INDEX(AC.ID(ACE)) = 7
        ALWAYS
        PRINT 1 LINE WITH AC.ID(ACE), AC.LOCATION(ACE),
                           AC. LAUNCH. TIME (ACE) THUS
AC ** AT * SCHED TO LAUNCH AT ***
    LOGP
     WHILE ((NUM-OPEN-SPOTS > 0) AND (N-SPOT-Q > 0) AND (I > 1)). DD
        SUSTRACT 1 FROM I
    PRINT 1 LINE WITH NUM-OPEN-SPOTS, N.SPOT.Q, I,SPOT(I) THUS
  #OPEN SPOTS= **
                   #SPOT.Q = ** I = * SPOT(I) = **
       IF SPOT(I) = 0
           LET SPOTT = I
           IF N.AV8.PLAN > 0
              REMOVE THE FIRST FLIGHTE FROM AVB.PLAN
              LET AV8.LAUNCH.TIME = FLT.TIME(FLIGHTE)
              FILE THIS FLIGHTE IN AV8.PLAN
          ELSE
              LET AV8.LAUNCH.TIME = 9999
           ALWAYS
           FOR EACH FLIGHTE IN THE PLAN
               WITH ((FLT.AC.TYPE(FLIGHTE) <> 3)
                    AND (FLT.DELAY(FLIGHTE) = 3))
           FIND THE FIRST CASE
           IF FOUND
              LET HELO.LAUNCH.TIME = FLT.TIME(FLIGHTE)
           ELSE
             LET HELD.LAUNCH.TIME = 9999
           ALWAYS
              PRINT 1 LINE WITH AVB.LAUNCH.TIME. HELD.LAUNCH.TIME.
                                SPOTT THUS
                        HELO.LAUNCH.TIME= **** OPEN SPOT IS **
AV8.LAUNCH.TIME= ***
           FOR EACH ACE IN SPOT.Q.
              FOR J = 1 TO SPOT.AC(AC.TYPE(ACE), INDEX(AC.ID(ACE))),
                 WITH ((SPOT.AC(AC.TYPE(ACE),J) = SPOTT)
                  AND (((AC.LOCATION(ACE) = 9)
                  AND ((AC.FLYING.TIME(ACE) < 33)
                    JR (((CAC.LAUNCH.TIME(ACE) - TIME.V)
                          > AC.FLYING.TIME(ACE))
                         DR ((AC.LAUNCH.TIME(ACE)-TIME.V) < 25))
                       AND ((CAVB.LAUNCH.TIME
```

> AC.LAUNCH.TIME(ACE)) OR (AVB.LAUNCH.TIME > (TIME.V + 20))) OR ((AC.TYPE(ACE) = 3)AND (AVB.LAUNCH.TIME > (TIME.V + 10)))) AND (CHELD-LAUNCH-TIME > (TIME.V + 10)) DR ((HELD.LAUNCH.TIME + 1.) > AC.LAUNCH.TIME(ACE)))))) OR ((AC.LOCATION(ACE) < 9) AND ((SPOTT > 2) OR (AV8.LAUNCH.TIME >= AC.LAUNCH.TIME(ACE))) AND ((AC.LAUNCH.TIME(ACE) - TIME.V) < 25)))) FIND THE FIRST CASE IF FOUND ** AC COMPATIBLE WITH SPOT IDENTIFIED PRINT 1 LINE WITH AC.ID(ACE), SPOTT, AC. LAUNCH. TIME(ACE), AC_FLYING.TIME(ACE) THUS AC ** COMPATIBLE TO GO TO SPOT * HAS LAUNCH.TIME= *** AND FLYING.TIME= ** IF AC.LUCATION(ACE) = 9 IF FLAG = 0 LET XBAR = TTRECOVER.AC(AC.TYPE(ACE)) LEJ SDEY = S.TTRECOVER.AC(AC.TYPE(ACE)) LET TTRECOVER = MORMAL.F(XBAR, SDEV, 1) IF TTRECOVER < (LAST.RECOVERY.TIME + .5 - TIME.V) LET TTRECOVER = .AST.RECOVERY.TIME + .5 - TIME.V ALHAYS IF TTREGOVER < (LAST.LAUNCH.TIME + 2 - TIME.V) LET TTRECOVER = LAST.LAUNCH.TIME + 2 - TIME.V ALWAYS LET FLAG = 1 ALWAYS

LET AC.DESTINATION(ACE) = SPOTT

LET SPOT(SPOTT) = -AC.ID(ACE)

SUBTRACT 1 FROM NUM.OPEN.SPOTS

PRINT 1 LINE WITH NUM.OPEN.SPOTS THUS

NUM.OPEN.SPOTS = **

SCHEDULE AN AC.RECOVERED GIVING ACE

IN TTRECOVER + INTERVAL MINUTES

ADO UNIFORM.F(.5..8.1) TO INTERVAL

LET LAST.RECOVERY.TIME = TTRECCVER + TIME.V

+ INTERVAL

PRINT 1 LINE WITH AC.ID(ACE),SPOTT,

(TTRECOVER+INTERVAL) THUS

AC ** WILL RECOVER TO SPOT ** IN ***.* MINUTES

REMOVE THIS ACE FROM SPOT.Q

ELSE

IF AC.LOCATION(ACE) < 12

IF AC.TYPE(ACE) < 3

LET AC-DESTINATION(ACE) = SPOTT

```
LET SPOT(SPOTT) = -AC.ID(ACE)
                       IF AC.SERVICE.FLAG(ACE) = 0
                          IF TUG < 4
                             ADD 1 TO TUG
                             LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                              LET SDEV = S.TTRESPOT.AC(AC.TYPE(ACE))
                              LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                              SCHEDULE AN ACRESPOTTED GIVING ACE
                                       IN TTRESPOT MINUTES
                          PRINT 1 LINE WITH AC. IDCACE), SPOTT THUS
                        AC ** WILL RESPOT TO SPOT **
                              FILE THIS ACE IN TUG.Q
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN TUG-Q
                           ALHAYS
                       ALWAYS
                        IF AC.LOCATION(ACE) > 6
                           SUBTRACT 1 FROM NUM-OPEN-SPOTS
                           PRINT 1 LINE WITH NUM. OPEN. SPOTS THUS
                           NUM.DPEN.SPOTS = **
                        ALWAYS
                       REMOVE THIS ACE FROM SPOT-Q
                    ELSE
                        IF AC.LAUNCH.TIME(ACE) = AV8.LAUNCH.TIME
                           IF SPUTT <= 2 ""AV8"S CAN RECOVER ON 1,2,5,6 BUT LA
                              IF (AC.LAUNCH.TIME(ACE) - TIME.V) <= 10.
                                 LET AC.DESTINATION(ACE) = SPOTT
                                 LET SPOT(SPOTT) = -AC.ID(ACE)
                                 LET XBAR = TTRESPOT.AC(AC. TYPE(ACE))
                                 LET SDEV = S.TTRESPOT.ACCAC.TYPECACE))
                                 LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                                 SCHEDULE AN AC. RESPOTTED GIVING ACE IN
                                       TTRESPOT MINUTES
                             PRINT 1 LINE WITH AC.ID(ACE), SPOTT THUS
                  WILL RESPOT TO **
                                 SUBTRACT I FROM NUM-OPEN-SPOTS
                                 PRINT 1 LINE WITH NUM.OPEN.SPOTS THUS
                                 NUM.OPEN.SPOTS = **
                                 REMOVE THIS ACE FROM SPOT.Q
                                 SCHEDULE, A SPOT-OPEN IN (AC-LAUNCH-TIME(ACE)
                                    - 10. + UNIFORM.F(.1,2.,9)) MINUTES
                              ALWAYS
                           ALWAYS
                        ALWAYS
                     ALWAYS
                    ELSE
                       IF AC.TYPE(ACE) < 3
                          LET AC.DESTINATION(ACE) = SPOTT
                          LET SPOT(SPOTT) = - AC.ID(ACE)
                          SUBTRACT 1 FROM NUM. OPEN. SPOTS
                          PRINT 1 LINE WITH NUM. OPEN. SPOTS THUS
                          NUM. OPEN. SPOTS = ##
                          LET AC.DESTINATION(ACE) = 8
                          FILE ACE IN SONE.AFT
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN BONE
                       ALHAYS
```

```
IF (SPOT(11) = 0) AND
                               (HANGER. EQUIV < MAX. HANGER. EQUIV)
                         LET XBAR = TTARRIV.E.AC(AC.TYPE(ACE))
                         LET SDEV = S.TTARRIV.E.AC(AC.TYPE(ACE))
                         LET TTARRIV.E = NORMAL.F(X3AR, SDEV, 8)
                         SCHEDULE AN ELEVATOR. ARRIVAL GIVING ACE
                                      IN TTARRIV.E MINUTES
                         LET SPOT(11) = -AC.ID(ACE)
                      ELSE
                         IF M.ELEVATOR.Q(ACE) <> 1
                            FILE ACE IN ELEVATOR.3
                         ALWAYS
PRINT I LINE WITH ACE THUS
AC ** FILED IN ELEVATOR.2
                      ALWAYS
                      REMOVE ACE FROM SPOT-Q
                   ALWAYS
                 ALWAYS
           PRINT 1 LINE WITH N.SPOT.Q, NUM. OPEN. SPOTS, I, SPOT(I),
                             AC.ID(ACE), AC.LOCATION(ACE) THUS
*IN SPOT.O ** *OPEN SPOTS * I * SPOT(I) ** AC.IO ** AC.LOC **
```

END

ALWAYS

ALWAYS

LOOP ALWAYS RETURN

```
EVENT SPOT.PRIDRITY GIVEN AC
DEFINE SPOTT, AC, ACE, ACE.T, FLAG AS INTEGER VARIABLES
 DEFINE INTERVAL AS A REAL VARIABLE
 PRINT 1 LINE WITH TIME.V, EVENT.V, AC. ID(AC), AC.PRIGRITY(AC),
                AC.FUEL.STAT(AC) THUS
T ****.** E ** AC ** W PRI *.*** FUEL *.** REQUESTED PRIDRITY LANDING
 IF M.SPOT.Q(AC) = 1 **OTHERWISE AC ALREADY HAS A RECOVERY DESTINATION
   IF NUM. OPEN. SPOTS > 0
      FOR I BACK FROM 6 TO 1 BY 1
        WITH SPOT(I) = 0
      FIND THE FIRST CASE
      IF FOUND
        LET SPOTT = I
      ELSE
        LET SPOTT = 0
        PRINT 1 LINE THUS
         OPEN SPOT NOT FOUND
## ERROR##
      AL WAYS
   ALWAYS
   IF I <> 0
```

PRINT 1 LINE WITH EVENT.V, NUM. OPEN.SPOTS.SPOTT THUS
EVENT ** #JPEN SPOTS ** OPEN SPOT * IF

LET AC.DESTINATION(AC) = SPOTT

LET SPOT(SPOTT) = - AC.ID(AC)

SUBTRACT 1 FROM NUM.OPEN.SPOTS

PRINT 1 LINE WITH NUM.OPEN.SPOTS THUS

NUM.JPEN.SPOTS = **

REMOVE THIS AC FROM DELTA.PATTERN

REMOVE THIS AC FROM SPOT.Q

LET XBAR = TTRECOVER.AC(AC.TYPE(AC))

LET SDEV = S.TTRECOVER.AC(AC.TYPE(AC))

LET TTRECOVER = NORMAL.F(XBAR, SCEV, 1)

IF TTRECOVER < (LAST.RECOVERY.TIME + .5 - TIME.V)

LET TTRECOVER = LAST.RECOVERY.TIME + .5 - TIME.V

ALWAYS

IF TTRECOVER < (LAST.LAUNCH.TIME + 2 - TIME.V)

LET TTRECOVER = LAST.LAUNCH.TIME + 2 - TIME.V

ALWAYS

LET LAST.RECOVERY.TIME = TTRECOVER + TIME.V

SCHEDULE AN AC-RECOVERED GIVING AC IN TIRECOVER MINUTES ADD 1 TO NUM-PRIDRITY-RECOVERIES PRINT 1 LINE WITH EVENT-V-AC-ID(AC)-SPOTT THUS

```
AC ** WILL RECOVER TO SPOT **
        FOR EACH ACE IN DELTA. PATTERN. DO
           PRINT 1 LINE WITH
                AC.ID(ACE), AC.PRIDRITY(ACE), AC.DESTINATION(ACE),
                AC.FLYING.TIME(ACE) THUS
       WITH PRIDRITY **. ** HAS DEST ** AND FLYING.TIME ***.*
        LOGP
        FOR EACH ACE IN DELTA.PATTERN
            WITH (CAC.PRIGRITY(ACE) > EMERGENCY.STAT.AC(AC.TYPE(ACE)))
                AND (AC.DESTINATION(ACE) = 9)),
        FIND THE FIRST CASE
        IF FOUND
           SCHEDULE A SPOT. EMERGENCY GIVING ACE IN .25 MINUTES
           PRINT 1 LINE WITH ACE, TIME. V THUS
      DECLARES EMERGENCY AT ****. **
ልሮ ቋቋ
        ELSE
           FOR EACH ACE IN DELTA.PATTERN
               WITH ((AC.PRIDRITY(ACE) > PRIDRITY.STAT.AC(AC.TYPE(ACE)))
                   AND (AC.DESTINATION(ACE) = 9)).
           FIND THE FIRST CASE
           IF FOUND
              SCHEDULE A SPOT-PRIGRITY GIVING ACE IN 1 MINUTES
              PRINT 1 LINE WITH ACE, TIME, V THUS
       DECLARES PRIDRITY AT ****.**
           ALWAYS
        AL WAYS
        FILE AC IN DELTA.PATTERN
     ELSE
        PRINT 1 LINE THUS
   NO OPEN SPOTS
        LET FLAG = 0
        FOR I SACK FROM 6 TO 1 8Y 1
           WHILE FLAG = 0, DO
           LET SPOTT = I
           IF SPOT(SPOTT) < 0
              FOR EACH ACE IN THE SHIP
                 WITH AC.ID(ACE) = - SPOT(SPOTT)
              FIND THE FIRST CASE
              IF FOUND
                 PRINT 1 LINE WITH AC. ID(ACE), AC. LOCATION (ACE),
                         AC.PRIDRITY(ACE), AC.DESTINATION(ACE),
                         AC.FUEL.STAT(ACE), AC.LAUNCH.TIME(ACE) THUS
AC ** AT ** HAS PRIDRITY **** DEST ** FUEL **** AND LAUNCH TIME ****
                 IF ((AC.LOCATION(ACE) < 9) OR ((AC.FUEL.STAT(ACE) > .5)
                                  AND (AC.LAUNCH.TIME(ACE) > (TIME.V+15))
                                  AND (AC.PRIDRITY(ACE) < .90)
                                  AND (AC.TYPE(ACE) <> 3)))
                    LET FLAG = 1
                    PRINT 1 LINE WITH EVENT. V, NUM. OPEN. SPOTS, SPOTT THUS
                    EVENT ** #OPEN SPOTS ** TARGET SPOT *
                                                              ELSE
                    PRINT 1 LINE WITH AC-ID(ACE), AC-LOCATION (ACE), SPOTT THUS
                        AC ** IN TRANSIT FROM ** TO ** MUST BE DISPLACED
                    IF AC.LOCATION(ACE) = 9
                       FOR EACH AC.RECOVERED IN EV.S(I.AC.RECOVERED)
                          WITH AC2 = ACE, DO
                          CANCEL AC.RECOVERED
                          PRINT 1 LINE WITH AC.ID(ACE) THUS
ACLRECOVERED EVENT SCHEDULED FOR AC ** MAS BEEN CANCELLED
```

LOCP

```
ELSE
                       FOR EACH AC.RESPOTTED IN EV.S(I.4C.RESPOTTED)
                          WITH AC3 = ACE, DO
                          CANCEL AC.RESPOTTED
                          PRINT 1 LINE WITH AC. IDCACE) THUS
AC.RESPOTTED EVENT SCHEDULED FOR AC ## HAS BEEN CANCELLED
                       LOOP
                    ALHAYS
                    FILE ACE IN SPOT.Q
                    LET AC.DESTINATION(ACE) = AC.LOCATION(ACE)
PRINT 1 LINE WITH ACE THUS
AC ** FILED IN SPUT.Q
                 ALWAYS
              ELSE
                 PRINT 1 LINE THUS
## ERROR##
             AC NOT FOUND
              ALWAYS
           ELSE
              FOR EACH ACE IN THE SHIP
                  WITH AC.ID(ACE) = SPOT(SPOTT)
              FIND THE FIRST CASE
              IF FOUND
                 PRINT 1 LINE WITH AC. ID(ACE), AC. LOCATION(ACE),
                         AC.FUEL.STAT(ACE), AC.LAUNCH.TIME(ACE) THUS
AC ** AT ** HAS FUEL *.*** AND LAUNCH TIME ****
                 IF (AC.DESTINATION(ACE) = 7) OR
                              (AC.DESTINATION(ACE) = 8)
                    LET FLAG = 2
                    PRINT 1 LINE WITH AC.ID(ACE) THUS
  AC ** IS IN TRANSIT TO THE BONE...WILL TAKE THIS SPOT FOR THE PRIDRITY -
                    IF M.TUG.Q(ACE) = 1
                       ADD 1 TO TUG
                       LET XBAR = TTRESPOT.AC(AC.TYPE(ACE))
                       LET SDEY = S.TTRESPOT.AC(AC.TYPE(ACE))
                       LET TTRESPOT = NORMAL.F(XBAR, SDEV, 2)
                       SCHEDULE A BONE. ARRIVAL GIVING ACE
                                IN TTRESPOT MINUTES
                       REMOVE ACE FROM TUG.Q
           PRINT 1 LINE WITH ACE THUS
AC ## REMOVED FROM TUG.Q
                    ALHAYS
                 ALWAYS
              ALWAYS
           ALHAYS
        LOOP
        IF FLAG <> 0
            IF (AC.FUEL.STAT(AC) < .25) AND (AC.TYPE(AC) = AC.TYPE(ACE)) **SWI
                                         AND (AC.LOAD.STAT(ACE) <> 1.6)
               IF AC.LAUNCH.TIME(ACE) < AC.LAUNCH.TIME(AC)
                  FOR EACH FLIGHTE IN PLAN
                      WITH FLT.TIME(FLIGHTE) = AC.LAUNCH.TIME(ACE)
                  FIND THE FIRST CASE
                  IF FOUND
                     PRINT 1 LINE WITH FLT.TIME(FLIGHTE),
                                        N. FLT. WAVE(FLIGHTE) THUS
#AC IN FLIGHT SCHED FOR #### IS ##
                     FOR EACH ACE.P IN FLT.WAVE(FLIGHTE). DO
```

PRINT 1 LINE WITH AC.ID(ACE.P).AC.LAUNCH.TIME(ACE.P) THUS AC ** IS SCHED TO LAUNCH AT ****
LOOP

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS AC = ** ACE = **

REMOVE ACE FROM FLT.WAVE(FLIGHTE)
LET AC.LAUNCH.TIME(ACE) = AC.LAUNCH.TIME(AC)
LET AC.LAUNCH.TIME(AC) = FLT.TIME(FLIGHTE)

PRINT 1 LINE WITH AC-ID(AC), AC-ID(ACE) THUS AC = ** ACE = **

PRINT 1 LINE WITH FLT.TIME(FLIGHTE),
N. FLT. WAVE(FLIGHTE) THUS

#AC IN FLIGHT SCHED FOR #### IS ##

FOR EACH ACE.P IN FLT.WAVE(FLIGHTE), DO PRINT 1 LINE WITH AC.ID(ACE.P), AC.LAUNCH.TIME(ACE.P) THUS

AC ** IS SCHED TO LAUNCH AT ***

LODP

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS

ALHAYS

IF AC.LAUNCH.TIME(ACE) < 9999

FOR EACH FLIGHTE.P IN PLAN

WITH FLT.TIME(FLIGHTE.P) = AC.LAUNCH.TIME(ACE)

FIND THE FIRST CASE

PRINT 1 LINE WITH AC-ID(AC), AC-ID(ACE) THUS AC = ** ACE = **

PRINT 1 LINE WITH FLT.TIME(FLIGHTE.P).
N.FLT.WAVE(FLIGHTE.P) THUS

HAC IN FLIGHT SCHED FOR *** IS **

FOR EACH ACE.P IN FLT.WAVE(FLIGHTE.P), DO PRINT 1 LINE WITH AC.ID(ACE.P), AC.LAUNCH.TIME(ACE.P) THUS

AC ** IS SCHED TO LAUNCH AT ****

PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS AC = ** ACE = **

REMOVE AC FROM FLT.WAVE(FLIGHTE.P)

FILE ACE IN FLT.WAVE(FLIGHTE.P)

PRINT 1 LINE WITH FLT.TIME(FLIGHTE.P);

N.FLT.WAVE(FLIGHTE.P) THUS

#AC IN FLIGHT SCHED FOR **** IS **
PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS
AC = ** ACE = **

FOR EACH ACE.P IN FLT.WAVE(FLIGHTE.P), DO
PRINT 1 LINE WITH AC.ID(ACE.P).AC.LAUNCH.TIME(ACE.P) THUS

AC ** IS SCHED TO LAUNCH AT ****
LOOP

ALWAYS

ALHAYS FILE AC IN FLT.WAVE(FLIGHTE)

PRINT 1 LINE WITH FLT.TIME(FLIGHTE).
N. FLT. WA VE(FLIGHTE) THUS

#AC IN FLIGHT SCHED FOR *** IS **
FOR EACH ACE.P IN FLT.WAVE(FLIGHTE), DO

```
PRINT 1 LINE WITH AC. ID(ACE.P), AC. LAUNCH. TIME(ACE.P) THUS
AC ** IS SCHED TO LAUNCH AT ***
                     LOOP
PRINT 1 LINE WITH AC.ID(AC), AC.ID(ACE) THUS
  = **
           ACE = **
               ALWAYS
            ALWAYS
           LET AC-DESTINATION(AC) = SPOTT
           LET SPOT(SPOTT) = - AC.ID(AC)
           REMOVE THIS AC FROM DELTA-PATTERN
           REMOVE THIS AC FROM SPOT-Q
           LET XBAR = TTRECOVER.AC(AC.TYPE(AC))
           LET SDEY = S.TTRECOVER.AC(AC.TYPE(AC))
           LET TTRECOVER = NORMAL.F(XBAR,SDEV,1)
           IF TTRECOVER < (LAST.RECOVERY.TIME + .5 - TIME.V)
              LET TTRECOVER = LAST.RECOVERY.TIME + .5 - TIME.V
           ALWAYS
           IF TTRECOVER < CLAST-LAUNCH.TIME + 2 - TIME.V)
              LET TTRECOVER = LAST.LAUNCH.TIME + 2 - TIME.V
           ALWAYS
           LET LAST.RECOVERY.TIME = TTRECOVER + TIME.V
           SCHEDULE AN AC.RECOVERED GIVING AC IN TTRECOVER MINUTES
           ADD 1 TO NUM.PRIDRITY.RECOVERIES
           PRINT 1 LINE WITH EVENT.V, AC.ID(AC), SPOTT, TTRECOVER THUS
         AC ** WILL RECOVER TO SPOT ** IN ****. * MINUTES
           FILE AC IN DELTA.PATTERN
           FOR EACH ACE IN DELTA.PATTERN
               WITH ((AC.PRIGRITY(ACE) > EMERGENCY.STAT.AC(AC.TYPE(ACE)))
                   AND (AC.DESTINATION(ACE) = 9)),
           FIND THE FIRST CASE
           IF FOUND
              SCHEDULE A SPOT. EMERGENCY GIVING ACE IN .25 MINUTES
              PRINT 1 LINE WITH ACE, TIME. V THUS
       DECLARES EMERGENCY AT ****. **
           ELSE
              FOR EACH ACE IN DELTA.PATTERN
                  WITH (CAC.PRIDRITY(ACE) > PRIDRITY.STAT.AC(AC.TYPE(ACE)))
                      AND (AC.DESTINATION(ACE) = 9)),
              FIND THE FIRST CASE
              IF FOUND
                 SCHEDULE A SPOT. PRIORITY GIVING ACE IN 1 MINUTES
                 PRINT 1 LINE WITH ACE, TIME. V THUS
       DECLARES PRIDRITY AT ****.**
              ALHAYS
           ALWAYS
        AL WAYS
     ALWAYS
     PRINT 1 LINE WITH AC.ID(AC) THUS
  AC ** HAS ALREADY BEEN ASSIGNED A RECOVERY SPOT
  ALHAYS
  FOR EACH ACE IN DELTA.PATTERN, DO
      PRINT 1 LINE WITH AC.IG(ACE), AC.PRIDRITY(ACE),
```

AC. DESTINATION (ACE) THUS

```
AC ** WITH PRIGRITY **. *** HAS DEST **
 LOGP
  FOR EACH ACE IN DELTA.PATTERN
      WITH ((AC.PRIDRITY(ACE) > EMERGENCY.STAT.AC(AC.TYPE(ACE)))
           AND (AC. DESTINATION (ACE) = 9)).
  FIND THE FIRST CASE
  IF FOUND
     SCHEDULE A SPOT. EMERGENCY GIVING ACE IN .25 MINUTES
     PRINT 1 LINE WITH ACE, TIME. V THUS
AC ** DECLARES EMERGENCY AT ****. **
  ELSE
     FOR EACH ACE IN DELTA.PATTERN
         WITH ((AC.PRIDRITY(ACE) > PRIDRITY.STAT.AC(AC.TYPE(ACE)))
              AND (AC.DESTINATION(ACE) = 9)),
     FIND THE FIRST CASE
     IF FOUND
        SCHEDULE A SPOT-PRIORITY GIVING ACE IN 1 MINUTES
        PRINT 1 LINE WITH ACE, TIME. V THUS
AC ** DECLARES PRIDRITY AT ****.**
     ALWAYS
  ALWAYS
  RETURN
  END
```

```
IF EVENT.V = 1
       PRINT 1 LINE WITH TIME. V, EVENT. V, AC. ID(AC1(AC. LAUNCHED)),
                                              AC.LDCATION(AC1(AC.LAUNCHED)) THUS
                          TIME: **** ** EVENT: ** AC.ID: ** AC.LOC: **
ALWAYS
IF EVENT.V = 2
       PRINT 1 LINE WITH TIME.V, EVENT.V, AC. ID(AC 2(AC.RECDVERED)),
                                              AC.DESTINATION(AC2(AC.RECOVERED)) THUS
                          TIME: **** EVENT: ** AC.ID: ** AC.DEST: **
ALWAYS
IF EVENT.V = 3
       PRINT 1 LINE WITH TIME.V, EVENT.V, AC. ID(AC3(AC.RESPOTTED)),
                                              AC. DESTINATION (AC3(AC.RESPOTTED)) THUS
                          TIME: *** EVENT: ** AC.ID: ** AC.DEST: **
ALWAYS
IF EVENT.V = 4
       PRINT 1 LINE WITH TIME. V, EVENT. V, AC. ID(AC4(AC.LDADED)),
                                              AC.LOCATION(AC4(AC.LOADED)) THUS
                           TIME: ****. ** EVENT: ** AC.ID: ** AC.LOC: **
ALWAYS
IF EVENT.V = 5
       PRINT 1 LINE WITH TIME.V, EVENT.V, AC. ID(AC5(AC.REFUELED)),
                                              AC.LOCATION(AC5(AC.REFUELED)) THUS
                          TIME: ****.** EVENT: ** AC.ID: ** AC.LOC: **
ALWAYS
IF EVENT.V = 6
       PRINT 1 LINE WITH TIME.V, EVENT.V, AC. ID(AC6(30NE.ARRIVAL)),
                                              AC.LOCATION(AC6(BONE.ARRIVAL)) THUS
                          TIME: ****. ** EVENT: ** AC.ID: ** AC.LOC: **
ALWAYS
IF EVENT.V = 7
       PRINT 1 LINE WITH TIME.V, EVENT.V, AC.ID(ACT(DELTA.ARRIVAL)),
                                              AC-LOCATION(AC7(DELTA.ARRIVAL)) THUS
                          TIME: ****.** EVENT: ** AC.ID: ** AC.LOC: **
ALHAYS
IF EVENT.V = 12
       PRINT 1 LINE WITH TIME. V. EVENT. V THUS
                          TIME: *** EVENT: **
LLWAYS
IF EVENT.V = 13
       PRINT 1 LINE WITH TIME.V. P. THE V. THE WITH TIME V. THE V
                                              AC.LOCATION(AC8(SPOT.EMERGENCY)) THUS
                          ALWAYS
IF EVENT.V = 14
       PRINT I LINE WITH TIME.V, EVENT.V, AC. ID(AC9(SPCT.PRICRITY)),
                                              AC.LOCATION(AC9(SPGT.PRICRITY)) THUS
                          TIME: ***. ** EVENT: ** AC. ID: ** AC.LOC: **
ALWAYS
IF EVENT.V = 15
       PRINT 1 LINE WITH TIME.V, EVENT.V.AC.ID(AC10(HANGER.ARRIVAL)),
                                              AC.LOCATION(ACIO(HANGER.ARRIVAL)) THUS
                           TIME: ****.** FVENT: ** AC.ID: ** AC.LDC: **
ALWAYS
```

```
IP EVENT.V = 16
    PRINT 1 LINE WITH TIME.V, EVENT.V, AC. ID(AC11(ELEVATOR.ARRIVAL)).
                      AC.LOCATION(AC11(ELEVATOR.ARRIVAL)) THUS
             TIME: ****.** EVENT: ** AC.ID: ** AC.LOC: **
ALWAYS
 IF EVENT.V = 17
    PRINT 1 LINE WITH TIME. V, EVENT. V, AC. IO(AC12(DECK. ARRIVAL)),
                      AC.LOCATION(AC12(DECK.ARRIVAL)) THUS
             TIME: ****. ** EVENT: ** AC.ID: ** AC.LOC: **
 ALWAYS
IF EVENT.V = 8
 PRINT 1 LINE WITH TIME.V, EVENT.V, FLT.TIME(FLIGHT1(DECK.DECISION)),
                  FLT.AC.TYPE(FLIGHT1(DECK.DECISION)) THUS
             'TIME: ####.## EVENT: ## FLT.TIME #### FLT.TYPE ##
ALWAYS
IF EVENT.V = 9
 PRINT 1 LINE WITH TIME. V, EVENT. V THUS
             TIME: **** EVENT: **
ALWAYS
IF EVENT.V = 10
 PRINT 1 LINE WITH TIME. V, EVENT. V, FLT. TIME(FLIGHT2(FLIGHT. LAUNCH)),
                  FLT.AC.TYPE(FLIGHT2(FLIGHT.LAUNCH)) THUS
             TIME: **** EVENT: ** FLT.TIME **** FLT.TYPE **
 ALWAYS
IF EVENT.V = 18
 PRINT 1 LINE WITH TIME.V, EVENT.V, FLT.TIME(FLIGHT3(FLIGHT.CHECK)),
                  FLT.AC.TYPE(FLIGHT3(FLIGHT.CHECK)) THUS
             TIME: *** PLT.TIME *** FLT.TYPE **
ALHAYS
RETURN
END
```

APPENDIX B

EVENT NUMBER KEY FOR SAMPLE VERIFICATION OUTPUT:

- 1 AC. LAUNCHED
- 2 AC.RECOVERED
- 3 AC.RESPOTTED
- 4 AC. LOADED
- 5 AC.REFUELED
- 6 BONE.ARRIVAL
- 7 DELTA.ARRIVAL
- 8 DECK. DECISION
- 9 SPOT. OPEN
- 10 FLIGHT. LAUNCH
- 11 STOP. SIMULATION
- 12 DELTA. UPDATE. CHK
- 13 SPOT. EMERGENCY
- 14 SPOT. PRIORITY
- 15 HANGER. ARRIVAL
- 16 ELEVATOR. ARRIVAL
- 17 DECK. ARRIVAL
- 18 FLIGHT. CHECK

```
SEED 1 =
                 889656876
                 575720521
SEED
                 251431696
SEED
               1230229622
SEED
SEED
                 481856962
SEED
                 155710971
SEED
               1492838383
SEED 8
               1313992727
SEED 9
    HANGER IS CAPABLE OF SLASHING 14 CH-46 EQUIVALENTS
    DISTANCE TO SHORE: 80000 METERS
    TYPES.AC =
                  22
        NUM
           AC
               :
                                                     OP: 0.30
                 LOC: 7
                         FUEL: 1.00
                                       LDAD: 0.
        ID:
                                                     OP: 0.80
                                       LDAD: 0.
             2
                 LDC:
                      7
                          FUEL: 1.00
        ID:
                                       LOAD: 0.
                                                     DP: 0.80
                                                                TYPE:
                          FUEL: 1.00
                 LOC:
                      7
        ID:
             3
                                                                TYPE:
                          FUEL: 1.00
                                       LDAD: 0.
                                                     OP: 0.80
                 Lac:
                      7
        ID:
             4
                                                     GP: 1.00
                                                                TYPE:
                          FUEL: 1.00
                                       LOAD: 0.
             5
                 LOC:
                      9
        ID:
                                                                TYPE:
                                       LBAD: 0.
                                                     QP: 1.00
                          FUEL: 1.00
                 LOC:
        ID:
                     9
             6
                                                                TYPE:
                                                     OP: 1.50
                          FUEL: 1.00
                                       LDAD: 0.
                 LOC: 9
        ID:
                                                     OP: 1.00
                                                                TYPE:
                                       LDAD: 0.
                 LDC: 9
                          FUEL: 1.00
        ID:
             8
                                                                TYPE:
                                                     OP: 0.80
                          FUEL: 1.00
                                       LDAD: 0.
             9
                 LOC: 7
        IO:
                                       LOAD: C.
                                                     GP: 3.80
                                                                TYPE:
                          PUEL: 1.00
                 LOC:
                      7
        ID:
            10
                                                                TYPE:
                                                     GP: 0.80
                          FUEL: 1.00
                                       LOAD: 0.
        ID:
                 LOC: 8
            11
                                                                TYPE:
                                       LDAD: 0.
                                                     DP: 0.80
                                                                        2
                          FUEL: 1.00
                 LOC: 8
        ID:
            12
                                                                TYPE:
                                                     GP: 1.00
                                       LUAD: 0.
                 Lac: 9
                          FUEL: 1.00
        ID: 13
                                                                TYPE:
                                       LDAD: 0-
                                                     3P: 1.00
                          FUEL: 1.00
        IO: 14
                 LOC: 9
                          FUEL: 1.00
                                       LDAD: 0.
                                                     DP: 0.80
                                                                TYPE:
                 LOC: 8
        ID: 15
                 LOC: 8
                          FUEL: 1.00
                                       LOAD: 0.
                                                     GP: 0:80
        ID: 16
                                                     CP: 1.00
                                       LGAD: 1.00
                          FUEL: 1.00
        ID: 17
                 LOC: 8
                                       LUAD: 1.00
                                                     OP: 1.00
                 LDC:
                      8
                          FUEL: 1.00
        ID: 18
                                                                TYPE:
                                                     GP: 1.00
                          FUEL: 1.00
                                       LDAD: 1.00
        ID: 19
                 LQC:
                      8
                                                                TYPE:
                                                     DP: 1.00
                                                                        3
                                       LDAD: 1.30
                          FUEL: 1.GQ
                 LOC: 8
        ID:
            20
                                       LOAD: 0.
                                                     QP: 0.60
                                                                TYPE:
                                                                        3
                          FUEL: 0.
                 LOC:12
        ID: 21
                                                                TYPE:
                                       LDAD: 0.
                                                     DP: 0.60
                 LDC:12
                          FUEL: 0.
        ID: 22
       SCHEDULED FLIGHTS = 35
                                          AC.TYPE :
AC.TYPE :
                                    20
                                                          #AC
                1 FLIGHT.TIME :
                                                          #AC
                2 FLIGHT.TIME
                                    21
                                                      Z
            :
                                          AC.TYPE
                                                          BAC
          Ī
            :
                3 FLIGHT-TIME :
                                    35
                                          AC.TYPE :
                                                          TAC
                4 FLIGHT.TIME :
                                    36
                                                          *AC
                                          AC.TYPE :
                5 PLIGHT.TIME :
                                    45
                                                      3
            :
                                          AC.TYPE :
                                                          FAC
                                                      1
                6 FLIGHT.TIME :
                                    65
                                          AC.TYPE :
                                                       2
                                                          WAC
                7 FLIGHT.TIME :
                                    66
                                          AC.TYPE
                6 FLIGHT.TIME :
                                                       3
                                                          .AC
                                    75
                                                          e A C
                                          AC.TYPE :
                9 FLIGHT.TIME :
                                    95
                                                       1
           I:
                                          AC.TYPE :
                                                          440
            : 10 FLIGHT.TIME :
                                    96
                                                          *4C
                                          AC.TYPE :
                                                       3
               11 FLIGHT.TIME :
                                   105
                                                          * A C
               12 PLIGHT.TIME :
                                          AC.TYPE
                                   125
                                          AC.TYPE :
                                                          FAC
                                   126
                                                              :
               13 FLIGHT.TIME :
                                                          440
                                          AC.TYPE
           I : I4 FLIGHT.TIME :
                                   135
                                                       3
                                                          .AC
                                          AC.TYPE
           I : 15 FLIGHT.TIME :
                                                       1
                                   155
                  FLIGHT.TIME
                                :
                                   156
                                          AC.TYPE
                                                          *AC
                                                              :
                                                          *AC
                                                              :
           I : 17 PLIGHT.TIME :
                                          AC.TYPE
                                    165
                                                   :
                                                       3
                                          AC.TYPE :
                                                          440
           I : 18 FLIGHT.TIME :
```

185

```
186
                                                    #AC :
         I : 19 FLIGHT.TIME :
                                      AC.TYPE :
         I : 20 FLIGHT.TIME :
                               195
                                      AC.TYPE :
         I : 21 FLIGHT.TIME :
                               215
                                      AC.TYPE :
                                                    AAC :
         I : 22 FLIGHT.TIME :
                                      AC.TYPE :
                                216
                                                 2 *46 :
         I : 23 FLIGHT.TIME :
                                225
                                      AC.TYPE :
                                                 3 #AC :
                                      AC.TYPE :
                                                    MAC :
                                245
         I : 24 FLIGHT.TIME :
                                                 1
                               246
                                                    #AC :
                                      AC.TYPE :
                                                 2
         I : 25 PLIGHT.TIME :
                               255
         I : 26 FLIGHT.TIME :
                                      AC.TYPE :
                                                 3
                                                    MAC :
                                275
                                      AC.TYPE :
                                                    #AC :
         I : 27 FLIGHT.TIME :
                                                 1
                                                 2 #AC :
                                      AC.TYPE :
          : 28 FLIGHT.TIME :
                                276
         I : 29 FLIGHT.TIME :
                                                 3 #AC :
                                285
                                      AC.TYPE :
         I : 30 FLIGHT.TIME :
                                305
                                      AC.TYPE :
                                                     #AC :
                                      AC.TYPE :
         I : 31 FLIGHT.TIME : 306
                                                 2 #AC :
         I : 32 FLIGHT.TIME : 315
                                      AC.TYPE :
                                      AC.TYPE : 1
                                                     RAC :
         I : 33 FLIGHT.TIME : 335
         I : 34 FLIGHT.TIME : 336
I : 35 FLIGHT.TIME : 345
                                      AC.TYPE : 2
                                                     WAC :
                                      AC-TYPE : 3 #AC :
NUM- CPEN-SPOTS = 6
               TIME:
                        0.
                              EVENT: 8 FLT.TIME 20 FLT.TYPE 1
THERE ARE 4 AC OF TYPE 1 IN THIS FLIGHT
                SCHED TO LAUNCH AT 20 AC: 1 COUNTER: 1
                                           AND RETURN AT
        AT 7
                                 NUM-OPEN-SPOTS = 5
                SCHED TO LAUNCH AT 20 AND RETURN AT AC : 2 COUNTER : 2
                                NUM-OPEN-SPOTS = 4
                SCHED TO LAUNCH AT 20 AND RETURN AT AC : 3 COUNTER : 3
        AT
                                NUM-OPEN-SPOTS = 3
        AT
                SCHED TO LAUNCH AT 20 AND RETURN AT
AC
                AC : 4 COUNTER :
                                NUM-SPEN-SPOTS = 2
T.NUM.AC = 0 FLT.AC.NUM = 4
                                COUNTER = 4
                        2.00 EVENT: 8 FLT.TIME 21 FLT.TYPE 2
               TIME:
THERE ARE 2 AC OF TYPE 2 IN THIS FLIGHT
                SCHED TO LAUNCH AT 21
AC : 11 COUNTER : 1
AC 11 AT 8
                                           AND RETURN AT
                                 NUM-SPEN-SPOTS = 1
AC 11 FILED IN TUG.Q
                SCHED TO LAUNCH AT 21 AND RETURN AT AC : 12 COUNTER : 2
AC 12 AT B
                                 O = STERS-MARG.MUM
AC 12 FILED IN TUG.Q
```

TIME: 3.77 EVENT: 3 AC.ID: 4 AC.DEST: 4
AC 4 WITH FUEL 1.35 AND LOAD C. HAS OP.STAT 0.31

T.NUM.AC = 0 FLT.AC.NUM = 2 COUNTER = 2

exercises produces persons

12000 TO 10000 TO 100

```
TIME:
                       4.00 EVENT: 8 FLT.TIME
                                                 35 FLT.TYPE
              OF TYPE 1 IN THIS FLIGHT
THERE ARE 4 AC
                SCHED TO LAUNCH AT
                                          AND RETURN AT
                                    35
                     5
                                    1
                AC :
                          COUNTER :
                SCHED TO LAUNCH AT
                                    35
                                         AND RETURN AT
AC
        AT
                AC :
                      6
                          COUNTER :
                SCHED TO LAUNCH AT
                                    35
                                         AND RETURN AT
                          COUNTER :
                AC : 7
               SCHED TO LAUNCH AT
                                    35
                                          AND RETURN AT
               AC : 8 COUNTER :
               FLT.AC.NUM = 4
T_NUM_AC = G
                                COUNTER =
               TIME:
                       4.11 EVENT: 3 AC.ID: 1 AC.DEST: 1
                                    DE.O TATZ.40 SAH
  1 WITH FUEL 1.00
                      AND LDAD O.
AC 12 REMOVED FROM TUG.Q.
              TIME:
                       4.37 EVENT: 3 AC.ID: 3 AC.DEST: 3
AC 3 WITH FUEL 1.00
                       AND LOAD O. HAS OP.STAT 0.80
                       5.00 EVENT: 12
DELTA.UPDATE.TIME=
                     0.
                               TIME-DELTA=
                                              5.0000
               TIME:
                       5.00 EVENT:
*3PEN SPOTS= 0 LAST DELTA UPDATE=
                                    C #DELTA AC= 6 N.SPOT.Q =
   S WITH DEST
                9 HAS PRIDRITY
                                0.81
                                       FUEL.STAT
                                                0.96 FLYING.TIME
                                                                    115-0
    6 WITH DEST
                9 HAS PRIGRITY
                                0.81
                                       FUEL.STAT
                                                  0.96
                                                       FLYING.TIME
                                                                    115.0
AC
                9 HAS PRIJRITY
   7 WITH DEST
                                0.81
                                       FUEL.STAT
                                                       FLYING.TIME
                                                 0.96
                                                                    115.0
                                                                    115.0
   8 WITH DEST
                9 HAS PRIDRITY
                                G . 81
                                       FUEL.STAT
                                                 0.96
                                                      FLYING.TIME
                                       FUEL-STAT
AC 13 WITH DEST
                9 HAS PRIDRITY
                                0.81
                                                 0.97
                                                      FLYING.TIME
                                                                    145.0
AC 14 WITH DEST
                9 HAS PRIDRITY
                                 0.81
                                       FUEL.STAT
                                                0.97 FLYING.TIME
AC 1+
      AT 9
            SCHED TO LAUNCH AT
                                 36
AC 13
       AT 9
            SCHED TO LAUNCH AT
                                 35
            SCHED TO LAUNCH AT
AC
                                  35
AC
       ΔT
            SCHED TO LAUNCH AT
                                  35
λC
      AT 9
            SCHED TO LAUNCH AT
    6
                                  35
       AT 9
           SCHED TO LAUNCH AT
                                  35
              TIME:
                       5.44 EVENT: 3 AC.ID: 2 AC.DEST: 2
AC 2 WITH FUEL 1.00
                       AND LOAD O.
                                     HAS OP.STAT 0.80
```

```
TIME:
                       6.00 EVENT: 8 FLT.TIME
                                                36 FLT.TYPE
THERE ARE 2 AC OF TYPE 2 IN THIS FLIGHT
               SCHED TO LAUNCH AT
AC 13
       ΔT
                                  36
                                         AND RETURN AT
                          COUNTER :
               AC : 13
                                    1
AC 14
       AT
               SCHED TO LAUNCH AT
                                   36
                                         AND RETURN AT
               AC : 14 COUNTER :
T.NUM.AC = G FLT.AC.NUM = 2
                              COUNTER = 2
              TIME:
                       7.33 EVENT: 3 AC.ID: 11 AC.DEST: 5
AC 11 WITH FUEL 1.00
                      AND LOAD Q.
                                    CE.C TATZ.QD ZAH
              TIME:
                       7.36 EVENT: 3 AC.ID: 12 AC.DEST:
AC 12 WITH FUEL 1.30
                      AND LOAD O.
                                    HAS DP.STAT 0.80
              TIME:
                       8.GO EVENT: 8 FLT.TIME
                                                45 FLT.TYPE
THERE ARE 2 AC OF TYPE 3 IN THIS FLIGHT
               SCHED TO LAUNCH AT 45
                                        AND RETURN AT
               AC : 17
                          COUNTER :
AC 18
               SCHED TO LAUNCH AT
                                        AND RETURN AT
                        COUNTER :
                                    2
               AC : 18
              FLT.AC.NUM = 2 COUNTER = 2
T-NUM-AC = 0
              TIME:
                       8.00 EVENT: 4 AC.ID: 17 AC.LOC:
AC 17 WITH FUEL 1.00
                      AND LOAD 1.00 HAS OP.STAT 1.000
THIS AC LOADED PREVIOUSLY
  AC.3P.STAT(AC) : 1.000
       8.00 THERE ARE 5 FLIGHTS IN THE PLAN
      AC.ID(AC): 17
                       AC.ID(ACE): 17
      #RDY AC IN FLIGHT = I
              TIME:
                       8.00 EVENT: 4 AC.ID: 18 AC.LCC: 9
AC 18 WITH FUEL 1.00
                      AND LOAD 1.00 HAS OP.STAT 1.000
THIS AC LOADED PREVIOUSLY
  AC-2P-STAT(AC) : 1.000
  AT
       8.00 THERE ARE 5 FLIGHTS IN THE PLAN
      AC. ID(AC) : 18
                        AC.ID(ACE): 18
       #ROY AC IN FLIGHT = 2
                    AC 17 FILED IN SPOT.O
                    AC 18 FILED IN SPOT.Q
```

5 #DELTA AC= 6 N.SPOT.Q = 8

8.00 EVENT:

TIME:

*GPEN SPOTS # 0 LAST DELTA UPDATE=

```
0.81
                                      FUEL.STAT C.93
   5 AITH DEST
                9 HAS PRIDRITY
                                                       FL YING. TIME
                                                                    112.0
AC
                                                0.73
                9 HAS PRIDRITT
                                      FUEL.STAT
                                                       PLYING.TIME
                                                                   112.0
AC
     WITH DEST
                                0.81
   7 WITH DEST
                9 HAS PRIORITY
                                0.81
                                      FUEL.STAT
                                                 0.93
                                                       FLYING.TIME
                                                                   112.0
AC
   8 WITH DEST
                9 HAS PRIDRITY
                                      FUEL.STAT
                                                0.93
                                                       FLYING.TIME
                                0.81
                9 HAS PRIDRITY
                                0.81
                                      FUEL.STAT
                                                 0.95
                                                       FLYING.TIME
AC 13 WITH DEST
                                      FUEL.STAT 0.95 FLYING.TIME 142.0
  14 WITH DEST
               9 HAS PRIORITY
                                C. 81
      AT 9 SCHED TO LAUNCH AT
                                 36
AC
AC 13
      AT 9 SCHED TO LAUNCH AT
                                 36
AC
   8
      AT
         9
            SCHED TO LAUNCH AT
                                 35
   7
            SCHED TO LAUNCH AT
                                 35
AC
       AT
            SCHED TO LAUNCH AT
                                 35
AC
      AT
         9
AC
  5
      AT 9
            SCHED TO LAUNCH AT
                                 35
AC 17
       AT 8 SCHED TO LAUNCH AT
                                 45
                                 45
AC 18
      AT 8 SCHED TO LAUNCH AT
                       8.04 EVENT: 16 AC.ID: 21 AC.LGC: 12
               TIME:
AC GOING TO DECK HAS ARRIVED AT THE ELEVATOR
               TIME:
                       9.80 EVENT: 17 AC.ID: 21 AC.LDC: 12
MANGER.EQUIV = 1.0
               TIME:
                      10.00 EVENT: 12
DELTA-UPDATE-TIME=
                      8.0000
                              TIME-DELTA=
                                              2-0000
              TIME:
                     11.66 EVENT: 6 AC.ID: 21 AC.LOC: 11
                      AND LOAD O. HAS OP.STAT 0.60
AC 21 WITH FUEL 0.
M. BONE. FHD= 2 N. BONE. AFT= 7 SQNE. TOTAL= 9
                                                  NUM. OPEN. SPOTS=
   N.LOAD.SET= 1
               TIME:
                      11.71 EVENT: 4 AC.ID: 4 AC.LCC:
AC 4 WITH FUEL 1.00
                       AND LOAD C.
                                    HAS OP.STAT 0.800
  AC. DP.STAT(AC) : 1.000
     11.71 THERE ARE 5 FLIGHTS IN THE PLAN
       AC.ID(AC): 4
                        AC.ID(ACE) :
       #RDY AC IN FLIGHT = 1
               TIME:
                       11.89 EVENT: 4 AC.ID: 1 AC.LOC: 1
AC 1 WITH FUEL 1.00
                       AND LOAD C.
                                    HAS OP.STAT 0.800
  AC. 0P.STAT(AC) : 1.000
      11.89 THERE ARE 5 PLIGHTS IN THE PLAN
       AC.ID(AC): 1 AC.ID(ACE):
       PRDY AC IN FLIGHT = 2
```

TIME: 12.30 EVENT: 4 AC.ID: 3 AC.LOC: DC8.0 TATZ-90 SAH 3 WITH FUEL 1.00 AND LOAD O. AC.DP.STAT(AC) : 1.000 12.30 THERE ARE 5 FLIGHTS IN THE PLAN AC. ID(AC): 3 AC-ID(ACE) : 4RDY AC IN FLIGHT = 3 12.88 EVENT: 4 AC.ID: TIME: Z AC-LIC: AC 2 WITH FUEL 1.00 AND LOAD O. HAS OP-STAT C-800 AC. UP.STAT(AC) : 1.000 12.89 THERE ARE 5 PLIGHTS IN THE PLAN AC.ID(ACE) : AC.ID(AC): 2 #RDY AC IN FLIGHT = 4 PLIGHT.LAUNCH HAS BEEN SCHEDULED TIME: 13-00 EVENT: 12 8-0000 DELTA.UPDATE.TIME= TIME-DELTA= 5-0000 13.00 EVENT: TIME: #OPEN SPOTS= 0 LAST DELTA UPDATE= #DELTA AC= 5 N. SPOT.Q = FUEL-STAT FLYING.TIME WITH DEST 9 HAS PRIDRITY 0.82 ₹.89 107.0 WITH DEST 9 HAS PRIGRITY AC 0.82 FUEL-STAT 0.89 FLYING.TIME 107.0 AC WITH DEST 9 HAS PRIDRITY 0.82 FUEL.STAT 0.89 FL YING. TIME 107-0 HAS PRIDRITY AC WITH DEST 9 0.82 FUEL-STAT 0.89 FLYING.TIME 107-5 AC 13 WITH DEST 9 HAS PRIDRITY 0.82 FUEL-STAT 0.91 FL YING.TIME 137.0 FUEL-STAT C.91 9 HAS PRIDRITY AC 14 WITH DEST 0.82 FLYING.TIME 137.0 AC AT 9 SCHED TO LAUNCH AT 14 36 AC 13 AT SCHED TO LAUNCH AT 36 AC SCHED TO LAUNCH AT 35 AC 7 AT SCHED TO LAUNCH AT 35 AC AT SCHED TO LAUNCH AT 9 35 AC 5 AT 9 SCHED TO LAUNCH AT 35 AC 17 AT SCHED TO LAUNCH AT 8 45 SCHED TO LAUNCH AT AC 13 AT 9 45 TIME: 13.38 EVENT: 10 FLT.TIME 20 FLT.TYPE 1 0. 0.9 INTERVAL= LAST.LAUNCH.TIME= LAST.REC.TIME= ٥. TIME: 13 AC 1 WILL LAUNCH IN 0.94 MINUTES TIME: 13 AC 2 WILL LAUNCH IN 1.44 MINUTES TIME: 13 AC 3 WILL LAUNCH IN 2.13 MINUTES TIME: AC 4 WILL LAUNCH IN 2.81 MINUTES 13 21 IS IN PLAN AND HAS FLIGHT AC 11 AT LOCATION 5 WITH DEST 10

35 IS IN PLAN AND HAS AC 5 AT LOCATION 9

AC 12 AT LOCATION

AC 6 AT LOCATION 9

WITH DEST 10

WITH DEST

WITH DEST

FLIGHT

FLIGHT

FLIGHT

21 IS IN PLAN AND HAS

35 IS IN PLAN AND HAS

```
FLIGHT
          35 IS IN PLAN AND HAS
                                AC
                                    8 AT LOCATION
                                                      WITH DEST
 FLIGHT
          36 IS IN PLAN AND HAS
                                AC 13 AT LOCATION
                                                      WITH DEST
 FLIGHT
          36 IS IN PLAN AND HAS AC 14 AT LOCATION
                                                      WITH DEST
 FLIGHT
          45 IS IN PLAN AND HAS
                               AC 17 AT LOCATION
                                                      WITH DEST
                                                   8
                                                                ٥
                                                      WITH DEST
 FLIGHT
          45 IS IN PLAN AND HAS
                                AC 18 AT LOCATION
                TIME:
                       14.31 EVENT: 1 AC.ID: 1 AC.LOC: 1
 AC 1 WITH FUEL 1.00
                       AND LUAD 1.00 HAS UP.STAT 1.00
 *OPEN SPOTS =
       AC 1 LAUNCHES FROM 1 WITH DELAY -5.69
 AC 1 WILL ARRIVE TO DELTA AT 69 WITH PRIDRITY 0.90 AND FLYING.TIME 57.2
 FLIGHT AT 20 WITH 5 AC LAUNCHES AC 1 AT 14.3
                TIME:
                       14.82 EVENT: 1 AC.ID: 2 AC.LDC: 2
 AC 2 WITH FUEL 1.00
                       AND LOAD 1.00 HAS OP.STAT 1.00
 #OPEN SPOTS =
                2
       AC 2 LAUNCHES FROM 2 WITH DELAY -5.18
     2 WILL ARRIVE TO DELTA AT 67 WITH PRIDRITY 0.90 AND FLYING.TIME 59.5
 FLIGHT AT
           25 WITH 5 AC LAUNCHES AC 2 AT
                TIME:
                       15.51 EVENT: 1 AC.ID: 3 AC.LOC: 3
 AC 3 WITH FUEL 1.00
                       AND LOAD 1.00 HAS OP.STAT 1.00
 #GPEN SPOTS =
       AC 3 LAUNCHES FROM 3 WITH DEL'AY -4.49
AC 3 WILL ARRIVE TO DELTA AT 73 WITH PRIDRITY 0.91 AND FLYING.TIME 54.3
           20 WITH 5 AC LAUNCHES AC 3 AT 15.5
 FLIGHT AT
               TIME:
                       16.19 EVENT: I AC.ID: 4 AC.LDC: 4
 AC + WITH FUEL 1.00
                       AND LUAD 1.00 HAS DP.STAT 1.00
 #GPEN SPOTS =
       AC 4 LAUNCHES FROM 4 WITH DELAY -3.81
   4 WILL ARRIVE TO DELTA AT 74 WITH PRIDRITY 0.91 AND FLYING.TIME 53.4
 FLIGHT AT 20 WITH 5 AC LAUNCHES AC 4 AT 16.2
                TIME:
                       16.50 EVENT: 9
 #OPEN SPOTS= 4. LAST DELTA UPDATE= 13 *OELTA AC= 5 N.SPOT.Q = 9
    5 WITH DEST
                 9 HAS PRIDRITY 0.93 FUEL.STAT 0.86 FLYING.TIME
                                                                    103-5
 AC
     123C HTIW 6
                 9 HAS PRIDRITY
                                 0.83
                                       FUEL-STAT
                                                  3.86
                                                       FLYING.TIME
                                                                    103-5
 AC
     7 WITH DEST
                  9 HAS PRIDRITY
                                 9.33
                                       FUEL-STAT
                                                  0.86
                                                       FL YING . TIME
                                                                    103.5
 AC
     8 WITH DEST
                 9 HAS PRIDRITY
                                       FUEL.STAT
                                 0.93
                                                 0.85 FLYING.TIME
                                                                    103.5
 AC 13 WITH DEST
                 9 HAS PRIDRITY
                                 0.82
                                       FUEL.STAT
                                                 0.89 FLYING.TIME
                                                                    133.5
 AC 14 WITH DEST
                9 HAS PRIDRITY
                                 26.0
                                       FUEL.STAT C.89 FLYING.TIME 133.5
 AC 14 AT 9 SCHED TO LAUNCH AT
                                  36
 AC 13 AT 9 SCHED TO LAUNCH AT
```

AC

7 AT LOCATION

WITH DEST

FLIGHT

35 IS IN PLAN AND HAS

36

```
SCHED TO LAUNCH AT
                                 35
     AT 9
AC
            SCHED TO LAUNCH AT
                                 35
AC
   7 AT 9
            SCHED TO LAUNCH AT
                                 35
AC
      AT
         9
            SCHED TO LAUNCH AT
                                 35
   5
       AT
         9
AC
      AT 8
           SCHED TO LAUNCH AT
                                 45
AC 17
AC 18 AT 8 SCHED TO LAUNCH AT
                                 45
                                          SPOT(I) = 12
  *OPEN SPOTS= 4
                   #SPOT-0 = 8
                                 I = 6
                                I = 5
I = 4
                   *SPOT.Q = 8
                                          SPGT(I) = II
  #OPEN SPOTS= 4
                                          SPOT(I) =
                   4SPOT.Q = 8
  AGPEN SPOTS# 4
                                           21 OPEN SPOT IS 4
                      HELD-LAUNCH-TIME=
AVS.LAUNCH.TIME=
                  45
                   *SPOT.Q = 8 I = 3
                                          SPOT(I) =
                                                    0
  #OPEN SPOTS# 4
                                          21 OPEN SPOT IS
                  45 HELD-LAUNCH-TIME=
-BMIT.HONUAL.BVA
                   #SPOT.2 = 8 I = 2
                                          SPGT(I) = 0
  #OPEN SPOTS# 4
                                          21 OPEN SPOT IS
                     HELD.LAUNCH.TIME=
AVS.LAUNCH.TIME=
                  45
                  #SPOT.Q = 8 I = 1
                                          SPGT(I) = 3
  HOPEN SPOTS= 4
                                           21 OPEN SPOT IS
AVB.LAUNCH.TIME=
                      HELD-LAUNCH.TIME=
                  45
```

TIME: 16.73 EVENT: 16 AC.ID: 22 AC.LOC: 12 AC GOING TO DECK HAS ARRIVED AT THE ELEVATOR

TIME: 17.09 EVENT: 4 AC.ID: 12 AC.LDC: 6
AC 12 JITH FUEL 1.00 AND LDAD 0. HAS DP.STAT 0.800
AC.JP.STAT(AC): 1.700
AT 17.09 THERE ARE 4 FLIGHTS IN THE PLAN
AC.ID(AC): 12 AC.ID(ACE): 12
BROY AC IN FLIGHT = 1

TIME: 17.32 EVENT: 4 AC.ID: 11 AC.LCC: 5
AC 11 HITH FUEL 1.00 AND LDAD 0. HAS OP.STAT U-800
AC.DP.STAT(AC): 1.00G
AT 17.32 THERE ARE 4 FLIGHTS IN THE PLAN
AC.ID(AC): 11 AC.ID(ACE): 11
#RDY AC IN FLIGHT = 2
FLIGHT.LAUNCH HAS BEEN SCHEDULED

TIME: 17.69 EVENT: 5 AC.ID: 21 AC.LDC: 8
AC 21 WITH FUEL 3. AND LDAD G. HAS OP.STAT 3.60
AC.OP.STAT(AC): 0.80 FLYING-TIME = 75.0
AV8 IS ALREADY BEING LDADED

TIME: 17.82 EVENT: 10 FLT.TIME 21 FLT.TYPE 2
INTERVALE 0.6 LAST.LAUNCH.TIME= 16.2 LAST.REC.TIME= 0.

TIME: 18 AC 11 WILL LAUNCH IN 0.59 MINUTES

TIME: 18 AC 12 WILL LAUNCH IN 1.05 MINUTES

FLIGHT 35 IS IN PLAN AND HAS AC 5 AT LOCATION 9 WITH DEST 9

```
6 AT LOCATION
                                AC
FLIGHT
         35 IS IN PLAN AND HAS
                                                       WITH DEST
FLIGHT
         35 IS IN PLAN AND HAS
                               AC
                                    7 AT LOCATION
                                                    3
                                                       WITH DEST
FLIGHT
         35 IS IN PLAN AND HAS
                                AC
                                   8 AT LOCATION
                                                       WITH DEST
                                                    9
FLIGHT
         36 IS IN PLAN AND HAS
                                AC 13 AT LOCATION
                                                       WITH DEST
         36 IS IN PLAN AND HAS
FLIGHT
                                AC 14 AT LOCATION
                                                   9
                                                       WITH DEST
FLIGHT
         45 IS IN PLAN AND HAS
                                AC 17 AT LOCATION
                                                       WITH DEST
                                                   3
                                                                  2
FLIGHT
         45 IS IN PLAN AND HAS
                                AC 18 AT LOCATION
                                                       WITH DEST
               TIME:
                       17.85 EVENT: 17 AC.ID: 22 AC.LDC: 12
HANGER. EQUIV =
                0.
               TIME:
                       18.00 EVENT: 12
DELTA.UPDATE.TIME=
                     16-4995
                                TIME-DELTA=
                                                1.5005
               TIME:
                       18.41 EVENT: 1 AC.ID: 11 AC.LOC:
AC II WITH FUEL 1.00
                       AND LOAD 1.00 HAS OP.STAT 1.00
*GPEN SPOTS =
      AC 11 LAUNCHES FROM 5 WITH DELAY -2.59
AC 11 WILL ARRIVE TO DELTA AT 70 WITH PRIORITY 0.38 AND FLYING.TIME 95.3
           21 WITH 3 AC LAUNCHES AC 11 AT
FLIGHT AT
                                             18.4
               TIME:
                       18.87 EVENT: 1 AC. ID: 12 AC. LOC:
AC 12 WITH FUEL 1.00
                       AND LOAD 1.00 HAS OP.STAT 1.00
SOPEN SPOTS =
      AC 12 LAUNCHES FROM 6 WITH DELAY -2.13
AC 12 WILL ARRIVE TO DELTA AT 79 WITH PRIDRITY 0.89 AND FLYING.TIME
FLIGHT AT
           21 WITH 3 AC LAUNCHES AC 12 AT 18.9
               TIME:
                       19-28 EVENT:
#OPEN SPOTS= 6 LAST DELTA UPDATE=
                                  16 #0ELTA AC= 5 N-SPOT.Q = 8
                 9 HAS PRIDRITY 0.83
AC
   S WITH DEST
                                       FUEL . STAT
                                                                      100.7
                                                  0.84 FLYING.TIME
AC
     WITH DEST
                 9 HAS PRIDRITY
                                 0.83
                                        FUEL.STAT
                                                   G.84
                                                         FLYING.TIME
                                                                      103.7
AC
    7 WITH DEST
                 9 HAS PRIDRITY
                                 0.83
                                        FUEL-STAT
                                                   0.84
                                                         FL YING . TIME
                                                                      100.7
AC
   TESO HTIL S
                 9 HAS PRIGRITY
                                 0.83
                                       FUEL-STAT
                                                  0.84
                                                         FLYING.TIME
                                                                      100.7
AC 13 WITH DEST
                 9 HAS PRIDRITY
                                                  0.67
                                 0.83
                                        FUEL.STAT
                                                         FLYING.TIME
                                                                      130-7
AC 14 WITH DEST
                9 HAS PRIDRITY
                                 2.83
                                        FUEL-STAT 3.87
                                                        FLYING.TIME
AC 14
      AT 9
            SCHED TO LAUNCH AT
                                  36
       AT 9
            SCHED TO LAUNCH AT
AC 13
                                  36
AC
   3
       AT 9
            SCHED TO LAUNCH AT
                                  35
AC
   7
       47 9
             SCHED TO LAUNCH AT
                                  35
AC
       AT 9
            SCHED TO LAUNCH AT
                                  35
AC
      AT 9
   5
            SCHED TO LAUNCH AT
                                  35
AC 17
      AT 8
            SCHED TO LAUNCH AT
                                  45
      TA HORNAL CT COHOS & TA
AC 13
                                  45
```

25.39.33

CONTROL DESCRIPTION DESCRIPTION

#OPEN SPOTS= 6

#SPOT.Q = 3

```
45
                        HELO.LAUNCH.TIME= 35 OPEN SPOT IS 6
AV8.LAUNCH.TIME=
    AC 14 CIMPATIBLE TO GO TO SPOT 6 HAS LAUNCH.TIME= 36 AND FLYING.TIME= 131
                     NUM.OPEN.SPOTS =
AC 14 WILL RECOVER TO SPOT 6 IN
                                     4.9 MINUTES
PIN SPOT.Q 7 SOPEN SPOTS 5 I 6 SPOT(I)-14 AC.ID 14 AC.LOC 9
POTO 5 SPOT(I) = 0
    AC 13 COMPATIBLE TO GO TO SPOT 5 HAS LAUNCH.TIME = 36 AND FLYING.TIME = 131
                     NUM-OPEN-SPOTS =
AC 13 HILL RECOVER TO SPOT 5 IN
                                      5.5 MINUTES
#IN SPOT.Q 6 #OPEN SPOTS 4 I 5 SPOT(I)-13 AC.ID 13 AC.LDC 9
                   #SPOT.Q = 6 I = 4 SPOT(I) = 2
45 HELO-LAUNCH.TIME= 35 OPEN SPOT IS 4
  #UPEN SPOTS= 4
AV8.LAUNCH.TIME=
    AC 8 COMPATIBLE TO GO TO SPOT 4 HAS LAUNCH.TIME = 35 AND FLYING.TIME = 101
                     NUM-OPEN-SPOTS = 3
AC 8 WILL RECOVER TO SPOT 4 IN
                                      6.1 MINUTES
#IN SPOT-Q 5 *OPEN SPOTS 3 I 4 SPOT(I) -8 AC.ID 8 AC.LOC 9
                         OT-Q = 5 I = 3 SPOT(I) = 0
HELO-LAUNCH-TIME= 35 OPEN SPOT IS 3
  #OPEN SPOTS= 3 #SPOT-Q = 5
AV8.LAUNCH.TIME=
                   45
    AC 7 COMPATIBLE TO GO TO SPOT 3 HAS LAUNCH.TIME=
                                                           35 AND FLYING.TIME= 101
                     NUM-OPEN-SPOTS = 2
AC 7 WILL RECOVER TO SPOT 3 IN
                                     6.7 MINUTES
#IN SPOT.Q 4 #OPEN SPOTS 2 I 3 SPOT(I) -7 AC.ID 7 AC.LOC 9 #OPEN SPOTS# 2 #SPOT.Q # 4 I # 2 SPOT(I) # 0 AV8.LAUNCH.TIME# 45 HELO.LAUNCH.TIME# 35 OPEN SPOT IS 2
- AC 6 COMPATIBLE TO GO TO SPOT 2 HAS LAUNCH.TIME= 35 AND FLYING.TIME= 101
                     NUM-OPEN-SPOTS =
AC 6 WILL RECOVER TO SPOT 2 IN 7.4 MINUTES
#IN SPOT-Q 3 #OPEN SPOTS 1 I 2 SPOT(I) -6 AC.ID 6 AC.LOC 9
  #OPEN SPOTS= 1 #SPOT.Q = 3 I = 1 SPOT(I) = 2

**LAUNCH.TIME= 45 MELO.LAUNCH.TIME= 35 OPEN SPOT IS 1
AV8.LAUNCH.TIME =
    AC 5 COMPATIBLE TO GO TO SPOT 1 HAS LAUNCH.TIME= 35 AND FLYING.TIME= 101
                     NUM-OPEN-SPOTS = 0
AC 5 WILL RECOVER TO SPOT 1 IN
                                     7.9 MINUTES
FIN SPOT-Q 2 #OPEN SPOTS O I 1 SPOT(I) -5 AC.ID 5 AC.LDC 9
                TIME:
                        21.50 EVENT: 12
DELTA-UPDATE.TIME= 19.2766
                                 TIME-DELTA=
                         22.12 EVENT: 6 AC.ID: 22 AC.LDC: 11
                TIME:
AC 22 WITH FUEL 0.
                       AND LOAD O. HAS OP.STAT 0.60
N.BONE.FWO= 2 N.BONE.AFT= 8 BONE.TOTAL= 10 NUM.SPEN.SPOTS= 3
   N.LJAD.SET= 2
                TIME:
                        22.58 EVENT: 18 FLT.TIME 27 FLT.TYPE 1
THIS FLIGHT HAS LAUNCHED
```

```
22.69 EVENT: 18 PLT.TIME 21 PLT.TYPE 2
              TIME:
THIS FLIGHT HAS LAUNCHED
              TIME:
                      23.40 EVENT: 2 AC.ID: 14 AC.DEST:
                                  HAS OP.STAT 1.00
AC 14 WITH FUEL 0.87
                     AND LOAD 0.
               LOC= 6 N.SPOT.Q= 2
                                         NUM. OPEN. SPOTS = G
                                                            AVA TO TIME=
                                                                           45
TO TIME 36
REFUELER= 1
               N.REFUELER.Q = 0
              TIME:
                      24.19 EVENT: 2 AC.ID: 13 AC.DEST:
AC 13 HITH FUEL 0-87
                     AND LOAD 0.
                                  HAS UP.STAT 1.00
              LOC= 5 N.SPOT.Q= 2 NUM.OPEN.SPOTS= 0
                                                            -SMIT OT BVA
TO TIME=
          36
               N.REFUELER.Q = 0
REFUELER=
          2
                      24.28 EVENT: 12
              TIME:
                    19-2766 TIME-DELTA=
                                             5.0000
DELTA.UPDATE.TIME=
                      24.28 EVENT: 9
              TIME:
                                                4 N.SPOT.Q =
DOPEN SPOTS = C LAST DELTA UPDATE = 19 DOELTA AC=
                                                0.80 FLYING.TIME
   5 WITH DEST 1 HAS PRIDRITY 0.84
                                     FUEL STAT
                                                     FLYING.TIME
AC
   TZBC HTIL &
                Z HAS PRIGRITY
                              0 - 34
                                     FUEL-STAT
                                               0.30
                                                                   95.7
                                     FUEL.STAT
   7 WITH DEST 3 HAS PRIGRITY
                               0 - 84
                                               0.80 FLYING.TIME
                                                                   95.7
AC.
   TZBC HTIL B
               4 MAS PRIGRITY
                               0.84
                                     FUEL.STAT 0.83 FLYING.TIME
                                                                   95.7
AC
AC 17 AT 3 SCHED TO LAUNCH AT
                                45
AC 18 AT 8 SCHED TO LAUNCH AT
                                45
              TIME:
                      24.81 EVENT: 2 AC.ID:
                                            :T 25C.34 8
AC 3 WITH FUEL 2.80
                      AND LOAD S.
                                   HAS OP.STAT 1.33
                                         NUM. OPEN. SPOTS= 0
               LOC= 4 M.SPOT.Q=
TO TIME= 35
                                    2
                                                            AVE TO TIME
                                                                           45
               M.REFUELER.Q = 0
REFUELER= 3
              TIME:
                      24.94 EVENT: 5 AC.ID: 14 AC.LDC: 6
                     AND LOAD O.
AC 14 WITH PUEL 0.87
                                   TAS OP.STAT 0.77
  AC.JP.STAT(AC): 0.80 PLYING.TIME = 150.J
               TIME:
                      25.00 EVENT: 8 FLT.TIME
THERE ARE 2 AC OF TYPE 1 IN THIS FLIGHT
AC 9 AT 7
               SCHED TO LAUNCH AT 65
                                        AND RETURN AT
                          COUNTER :
               AC :
   9 FILED IN SPOT.G
AC 10
               SCHED TO LAUNCH AT 65 AND RETURN AT
        AT 7
                        COUNTER : 2
               AC : 10
```

```
AC 10 FILED IN SPOT-Q
T.NUM.AC = 0 FLT.AC.NUM =
                               COUNTER = 2
                      25.36 EVENT: 2 AC.ID: 7 AC.DEST:
              TIME:
                                   HAS OP.STAT 1.00
                    AND LUAD O.
AC 7 WITH FUEL 0-80
TO TIME=
               LOC= 3
                        N.SPOT.Q=
          35
                                         -STORE .. SPOTS
                                                            AVS TO TIME=
               M-REFUELER.Q = 0
REFUELER= 3
                      25.39 EVENT: 4 AC.ID: 21 AC.LOC: 8
              TIME:
AC 21 WITH FUEL 1.00
                                    HAS OP.STAT U.800
                      AND LOAD C.
 AC.JP.STAT(AC) : 1.000
      25.39 THERE ARE 4 FLIGHTS IN THE PLAN
                     25.77 EVENT: 5 AC.ID: 13 AC.LOC: 5
              TIME:
                    AND LOAD 0-
AC 13 WITH FUEL 0.87
                                   HAS OP.STAT 0.77
 AC.OP.STAT(AC): 0.80 FLYING.TIME = 190.0
                      25.93 EVENT: 2 AC.ID: 6 AC.DEST:
              TIME:
AC 6 WITH FUEL C.80
                     AND LOAD G. HAS OP.STAT 1.00
         35
              LOC= 2
TO TIME =
                         N.SPOT.Q=
                                         NUM. OPEN.SPOTS= 0 AV8 TO TIME=
REFUEL ER=
         3
               M.REPUELER.Q = 0
              TIME:
                     26.00 EVENT: 8 FLT.TIME
THERE ARE 2 AC OF TYPE 2 IN THIS FLIGHT
               SCHED TO LAUNCH AT 66
                                       AND RETURN AT
               AC : 15
                         COUNTER :
AC 15 FILED IN SPOT-Q
               SCHED TO LAUNCH AT
AC 16
       AT
                                        AND RETURN AT
                                   66
               AC : 16 COUNTER :
AC 16 FILED IN SPOT-Q
T.NUM.AC = 0 FLT.AC.NUM = 2 COUNTER = 2
              TIME:
                      26.70 EVENT: 2 AC.ID: 5 AC.DEST: 1
   5 WITH FUEL 0.80
                    AND LOAD O.
                                  HAS OP.STAT 1.00
TO TIMES
              LJC= 1 N.SPOT.Q= 6
          35
                                         NUM. OPEN. SPOTS= 0 AVE TO TIME=
REFUEL ER=
               N.REFUELER.Q . 0
```

AND LJAD O.

TIME:

AC.GP.STAT(AC): 0.90 FLYING.TIME = 120.0

AC S JITH FUEL 0.80

26.95 EVENT: 5 AC.ID: 9 AC.LOC: 4

HAS OP.STAT 0.76

```
TIME:
                       27.27 EVENT: 5 AC.ID: 7 AC.LOC: 3
AC 7 WITH FUEL 9.80
                       AND LOAD C.
                                     HAS OP-STAT 0.76
  AC.SP.STAT(AC): 0.30 FLYING.TIME = 120.0
               TIME:
                       27.70 EVENT: 5 AC.ID:
                                                6 AC.LOC:
AC 5 WITH FUEL 0.90
                      AND LEAD O.
                                     HAS QP.STAT 0.76
  AC.OP.STAT(AC): 0.89 FLYING.TIME = 120.0
               TIME:
                       27.84 EVENT: 5 AC.ID: 22 AC.LOC:
  22 WITH FUEL 3. AND LOAD Q. HAS OP.STAT 0.63 AC.OP.STAT(AC): 0.80 FLYING.TIME = 75.0
AC 22 WITH FUEL 3.
AVS IS ALREADY BEING LOADED
                       29-28 EVENT: 12
               TIME:
DELTA.UPDATE.TIME=
                     24.2766
                                TIME-DELTA=
                                                5-2000
               TIME:
                       29.28 EVENT: 9
OPEN SPOTS = 0 LAST DELTA UPDATE
                                    24 SDELTA AC=
                                                   3 N. SPOT.Q = 6
AC 17
            SCHED TO LAUNCH AT
                                   45
      E TA
AC 18
             SCHED TO LAUNCH AT
      AT S
                                  45
AC
  •
            SCHED TO LAUNCH AT
      AT 7
                                  65
AC 10
      AT 7
             SCHED TO LAUNCH AT
                                  65
AC 15
      AT 8
             SCHED TO LAUNCH AT
                                   66
AC 16
      AT 8 SCHED TO LAUNCH AT
                                   66
               TIME:
                       29.31 EVENT: 5 AC.ID: 5 AC.LOC: 1
AC 5 WITH FUEL 0.40
                                      HAS OP.STAT 0.75
                       AND LOAD O.
  AC.OP.STAT(AC): 0.80 FLYING.TIME = 120.0
               TIME:
                       29.57 EVENT: 4 AC.ID: 7 AC.LOC:
AC 7 WITH WURL 1.00
                       AND LOAD 3.
                                      HAS OP.STAT C.855
  AC.OP.STAT(AC) : 1.000
       29.57 THERE ARE 5 FLIGHTS IN THE PLAN AC.ID(AC): 7 AC.ID(ACE): 7
  AT
       WRDY AC IN FLIGHT = 1
                       30.68 EVENT: 4 AC.ID: 9 AC.LDC:
AC 8 WITH FUEL 1.30
                      AND LOAD G.
                                       HAS OP.STAT 1.800
```

AC.JP.STAT(AC) : 1.000

AT 30.68 THERE ARE 5 FLIGHTS IN THE PLAN AC.ID(AC): 8 AC.ID(ACE): 8 PROV AC IN FLIGHT = 2

TIME: 31.75 EVENT: 4 AC.ID: 6 AC.LDC: 2
AC 6 WITH FUEL 1.00 AND LOAD 0. HAS OP.STAT 0.800
AC.OP.STAT(AC): 1.000
AT 31.75 THERE ARE 5 FLIGHTS IN THE PLAN
AC.ID(AC): 6 AC.ID(ACE): 6
#RDY AC IN FLIGHT = 3

TIME: 33.09 EVENT: 4 AC.ID: 5 AC.LDC: 1
AC 5 WITH FUEL 1.00 AND LOAD 0. HAS OP.STAT 0.800
AC.OP.STAT(AC): 1.000
AT 33.09 THERE ARE 5 FLIGHTS IN THE PLAN
AC.ID(AC): 5 AC.ID(ACE): 5

#RDY AC IN FLIGHT = 4

FLIGHT.LAUNCH HAS BEEN SCHEDULED

TIME: 33.53 EVENT: 4 AC.ID: 13 AC.LDC: 5
AC 13 WITH FUEL 1.00 AND LOAD 0. HAS OP.STAT 0.800
AC.OP.STAT(AC): 1.000
AT 33.53 THERE ARE 5 FLIGHTS IN THE PLAN
AC.ID(AC): 13 AC.ID(ACE): 13
#RDT AC IN FLIGHT = 1

33.59 EVENT: 10 PLT.TIME 35 PLT.TYPE 1 TIME: INTERVAL= LAST.LAUNCH.TIME= 18.9 LAST.REC.TIME= 27.2 0.8 TIME: 34 AC 5 WILL LAUNCH IN 0.81 MINUTES TIME: 34 AC 6 WILL LAUNCH IN 1.36 MINUTES 7 WILL LAUNCH IN 2.03 MINUTES TIME: 34 AC TIME: 34 AC 8 WILL LAUNCH IN 2.44 MINUTES 36 IS IN PLAN AND HAS AC 13 AT LOCATION 5 WITH DEST 10 35 IS IN PLAN AND HAS AC 14 AT LOCATION 6 WITH DEST 10 45 IS IN PLAN AND HAS AC 17 AT LOCATION 9 WITH DEST 0 FLIGHT FLIGHT 45 IS IN PLAN AND HAS FLIGHT AC 18 AT LOCATION **FLIGHT** 43 IS IN PLAN AND HAS TZSC HTIW FLIGHT 65 IS IN PLAN AND HAS AC 9 AT LOCATION 7 WITH DEST FLIGHT 65 IS IN PLAN AND HAS AC 10 AT LOCATION 7 WITH DEST FL IGHT 66 IS IN PLAN AND HAS AC 15 AT LOCATION 3 WITH DEST 66 IS IN PLAN AND HAS AC 15 AT LOCATION 3 WITH DEST FLIGHT

TIME: 33.68 EVENT: 4 AC.ID: 14 AC.LDC: 6
AC 14 WITH FUEL 1.CC AND LOAD C. HAS OP.STAT 0.377
AC.OP.STAT(AC): 1.0CO
AT 33.68 THERE ARE 4 FLIGHTS IN THE PLAN

AC.ID(AC): 14 AC.ID(ACE): 14 #RDY AC IN FLIGHT = 2 #LIGHT-LAUNCH HAS BEEN SCHEDULED

```
34.18 EVENT: 10 FLT.TIME
               TIME:
                                                    36 FLT.TYPE 2
INTERVAL=
           0.9
                 LAST.LAUNCH.TIME=
                                      36.0
                                            LAST.REC.TIME=
           TIME:
                   34
                        AC 13 WILL LAUNCH IN 2.85 MINUTES
           TIME:
                   34
                        AC 14 WILL LAUNCH IN 3.53 MINUTES
FLIGHT
         45 IS IN PLAN AND HAS
                                 AC 17 AT LOCATION
                                                        WITH DEST
FLIGHT
         45 IS IN PLAN AND HAS
                                 AC 18 AT LOCATION
                                                        WITH DEST
                                    9 AT LOCATION
FLIGHT
         65 IS IN PLAN AND HAS
                                 AC
                                                     7
                                                        WITH DEST
                                 AC 10 AT LUCATION
                                                        WITH DEST
FLIGHT
         65 IS IN PLAN AND HAS
                                                     7
FL IGHT
         66 IS IN PLAN AND HAS
                                 AC 15 AT LOCATION
                                                     3
                                                        FIZEC HTIL
                                                                    0
FLIGHT
         66 IS IN PLAN AND HAS
                                 AC 16 AT LOCATION
                                                     9
                                                        HITH DEST
               TIME:
                        34.28 EVENT: 12
DELTA.UPDATE.TIME=
                      24.2766
                                 TIME-DELTA=
                                               10.0000
               TIME:
                        34.28 EVENT: 9
#OPEN SPOTS= 3 LAST DELTA UPDATE= 24 #DELTA AC= 0 N.SPOT.G =
AC 17
             SCHED TO LAUNCH AT
       AT S
                                   45
             SCHED TO LAUNCH AT
AC 18
       AT 3
                                   45
       AT 7
             SCHED TO LAUNCH AT
                                   65
AC 10
       AT T
             SCHED TO LAUNCH AT
                                   55
AC 15
       AT 3
             SCHED TO LAUNCH AT
                                   66
AC 16
       AT 9 SCHED TO LAUNCH AT
                                   66
               TIME:
                        34.40 EVENT: 1 AC.ID: 5 AC.LDC: 1
AC 5 WITH FUEL 1.00
                        DILI TATZ.40 ZAH DILI CADI ONA
*GPEN SPOTS =
      AC 5 LAUNCHES FROM 1 WITH DELAY -0.60
    5 WILL ARRIVE TO DELTA AT 92 WITH PRIDRITY 0.91 AND FLYING.TIME
                                                                       53 -2
FLIGHT AT
           35 WITH 5 AC LAUNCHES AC
               TIME:
                        34.95 EVENT: I AC.ID: 6 AC.LDC:
AC 6 WITH FUEL 1.00
                        OC.1 TATZ. QC SAH OO.1 DACL DAR
ACPEN SPOTS =
AC 6 LAUNCHES FROM 2 HITM DELAY -0.05
AC 6 HILL BRRIVE TO DELTA AT 92 HITM PRIORITY 1.91 AND FLYING.TIME
FLIGHT AT
           35 WITH 5 AC LAUNCHES AC 6 AT 34.9
```

TIME: 35.00 EVENT: 3 FLT.TIME 75 FLT.TYPE 3 THERE ARE 2 AC OF TYPE 3 IN THIS REIGHT

```
SCHED TO LAUNCH AT 75
AC 19
                                            AND RETURN AT
                AC : 19 COUNTER
SCHED TO LAUNCH AT
                            COUNTER :
                                       1
                                      75
AC 20
                                            AND RETURN AT
                 AC : 20 COUNTER : 2
                FLT.AC.NUM = 2 COUNTER =
T.NUM.AC =
               TIME:
                        35.00 EVENT: 4 AC.ID: 19 AC.LC:
AC 19 WITH FUEL 1.00
                        AND LOAD 1.GC HAS OP.STAT 1.COC
THIS AC LOADED PREVIOUSLY
  AC-OP-STATCAC) : 1.000
       35.00 THERE ARE 4 PLIGHTS IN THE PLAN
  ΔŤ
       AC.ID(AC): 19
                         AC.ID(ACE): 19
       #RDY AC IN FLIGHT = 1
                        35.00 EVENT: 4 AC.ID: 20 AC.LOC:
AC 20 WITH FUEL 1.00
                        AND LUAD 1.00 HAS OP.STAT 1.000
THIS AC LOADED PREVIOUSLY
  AC.DP.STAT(AC) : 1.000
       35.00 THERE ARE 4 PLIGHTS IN THE PLAN
       AC.ID(AC): 20
                         AC-ID(ACE): 20
       4RDY AC IN FLIGHT = 2
                      AC 19 FILED IN SPOT.Q
                      AC 20 FILED IN SPOT-Q
               TIME:
                        35.00 EVENT:
#OPEN SPOTS= 2 LAST DELTA UPDATE=
                                     24
                                                    C N. SPOT.O =
AC 17
       AT B SCHED TO LAUNCH AT
                                    45
AC 13
       AT S
             SCHED TO LAUNCH AT
                                   45
AC
   7
       AT 7
             SCHED TO LAUNCH AT
                                   65
             SCHED TO LAUNCH AT
AC 10
         7
       AT
                                    65
AC 15
         5
             SCHED TO LAUNCH AT
       AT
                                    66
AC 15
      AT 3
             SCHED TO LAUNCH AT
                                    66
            SCHED TO LAUNCH AT
AC 19
      AT 9
                                    75
      AT 8 SCHED TO LAUNCH AT
AC 20
                                    75
  -CTER MARDE
                     • SPOT. 3 =
                                    I = 6
                                             SPOT(I) = 14
  -CTC92 M39D#
                     #SP0T.Q =
                                    I = 5
                2
                                             SPGT(I) = 13
                                8
  #CPEN SPITS#
                2
                     #SPOT.Q =
                                8
                                    I = 4
                                             SPOT(I) =
  #CPEN SPOTS=
                     *SPOT.Q *
                                8
                                     I = 3
                                             SPOT(I) =
                     •SPOT.3 = 9
  -CPEN SPOTS=
                                     I = 2
                                             SPOT(I) =
AV8.LAUNCH.TIME=
                  45 HELD.LAUNCH.TIME=
                                             65 GPEN SPCT IS
    AC 17 COMPATIBLE TO GO TO SPOT 2 HAS LAUNCH.TIME=
                                                           +5 AND FLYING.TIME=
         AC = 17 WILL RESPOT TO 2
                                 NUM-OPEN-SPOTS = 1
#IN SPOT.Q 7 #OPEN SPOTS 1 I 2 SPOT(I)-17 AC.ID 17 AC.LDC #OPEN SPOTS 1 #SPOT.Q # 7 I # 1 SPOT(I) # 0 AV8.LAUNCH.TIME# 65 OPEN SPOT IS 1
    AC 18 COMPATIBLE TO GO TO SPOT 1 HAS LAUNCH.TIME=
```

NUM.SPEN.SPSTS = 0

AC = 14 WILL RESPOT TO 1

45 AND FLYING.TIME=

73

```
TIME:
                      35.62 EVENT: 1 AC.ID: 7 AC.LOC: 3
                      AND LOAD 1.05 HAS OP.STAT 1.00
  7 WITH FUEL 1.00
OPEN SPOTS =
      AC 7 LAUNCHES FROM 3 WITH DELAY
                                          0.62
  7 WILL ARRIVE TO DELTA AT 89 WITH PRIORITY 0.90 AND PLYING. TIME
FLIGHT AT 35 WITH 5 AC LAUNCHES AC 7 AT 35.6
                      36-03 EVENT: 1 AC.ID: 8 AC.LOC: 4
              TIME:
                      AND LOAD 1.00 HAS OP.STAT 1.00
AC 8 WITH FUEL 1.00
#OPEN SPOTS =
                2
     AC 8 LAUNCHES FROM 4 WITH DELAY
                                         1.03
  8 WILL ARRIVE TO DELTA AT 94 WITH PRIDRITY 0.91 AND FLYING.TIME 53.7
FLIGHT AT 35 WITH 5 AC LAUNCHES AC 8 AT 36.0
               TIME:
                      36.40 EVENT:
#OPEN SPOTS= 2 LAST DELTA UPDATE≈ 24 #DELTA AC= 0 N.SPOT.Q = 6
            SCHED TO LAUNCH AT
                                 65
AC 9
      AT 7
            SCHED TO LAUNCH AT
AC 10
      AT 7
                                 65
AC 15
      AT 8
            SCHED TO LAUNCH AT
                                 66
4C 16
     AT 9
           SCHED TO LAUNCH AT
                                 66
AC 19
     AT B SCHED TO LAUNCH AT
                                 75
AC 20 AT 9 SCHED TO LAUNCH AT
                                 75
                  #SPOT.Q = 6
#SPOT.Q = 6
#SPOT.Q = 6
                                  I = 6 SPOT(I) = 14
  #OPEN SPOTS= 2
  #OPEN SPOTS= 2
#OPEN SPOTS= 2
                                  I = 5
                                          SPOT(I) = 13
                                I = 4
                                          SPUT(I) = 0
                                           65 CPEN SPCT IS
AVB.LAUNCH.TIME=
                  45 HELD.LAUNCH.TIME=
                   #SPOT.Q = 6 I = 3
                                          SPOT(I) = 0
  #OPEN SPOTS= 2
AV8.LAUNCH.TIME=
                      HELD.LAUNCH.TIME=
                                          65 CPEN SPOT IS
                  45
  #OPEN SPOTS# 2
                   #SPOT_Q = 6 I = 2
                                          SPOT(I) =-17
  #OPEN SPOTS= 2
                   #SPOT.Q = 6
                                  I = 1
                                          SPOT(I) =-18
               TIME:
                      36.93 EVENT: 19 PLT.TIME 35 FLT.TYPE 1
THIS FLIGHT HAS LAUNCHED
               TIME:
                      37.03 EVENT: 1 AC.ID: 13 AC.LDC: 5
AC 13 WITH FUEL 1.00
                      AND LOAD 1.00 HAS OP.STAT 1.00
*OPEN SPOTS = 3
```

AC 13 WILL ARRIVE TO DELTA AT 92 WITH PRIORITY G.38 AND FLYING.TIME 86.9

36 WITH 3 AC LAUNCHES AC 13 AT 37.0

1.73

AC 13 LAUNCHES FROM 5 WITH DELAY

FLIGHT AT

TIME: 37.09 EVENT: 3 AC.ID: 17 AC.DEST: 2
AC 17 WITH FUEL 1.00 AND LOAD 1.00 HAS OP.STAT 1.00
AV9 17 RDY TO LAUNCH AT 37 FROM SPOT 2
AV9 FLIGHT SCHED TO LAUNCH AT 45 HAS 1 AV8*S ROY ON SPOTS

TIME: 37.24 EVENT: 18 FLT.TIME 36 FLT.TYPE 2 THIS FLIGHT HAS LAUNCHED

TIME: 37.71 EVENT: 1 AC.ID: 14 AC.LDC: 6

AC 14 WITH FUEL 1.00 AND LOAD 1.00 HAS OP.STAT 1.00

#UPEN SPOTS = 4

AC 14 LAUNCHES FROM 6 WITH DELAY 1.71

AC 14 WILL ARRIVE TO DELTA AT 91 WITH PRIORITY 0.88 AND FLYING.TIME 88.5

FLIGHT AT 36 WITH 3 AC LAUNCHES AC 14 AT 37.7

TIME: 38.06 EVENT: 9 #OPEN SPOTS= 4 LAST DELTA UPDATE= 24 #DELTA AC= 0 N.SPOT.Q = 6 AT 7 SCHED TO LAUNCH AT AC 9 65 SCHED TO LAUNCH AT AC 10 AT 7 65 SCHED TO LAUNCH AT AC 15 B TA 66 AT 8 SCHED TO LAUNCH AT 66 AC 19 AT 8 SCHED TO LAUNCH AT 75 AT 8 SCHED TO LAUNCH AT AC 20 75 #SPOT.Q = 6 #OPEN SPOTS= 4 I = 6SPOT(I) = 0AVB.LAUNCH.TIME= 45 HELO.LAUNCH.TIME= 65 OPEN SPOT IS #SPOT-Q = 6 I = 5 *OPEN SPOTS= 4 SPOT(I) = 065 OPEN SPOT IS AV8.LAUNCH.TIME= HELD.LAUNCH.TIME= 45 #OPEN SPOTS= 4 #SPOT.Q = 6 I = 4 SPOT(I) = 0AV8_LAUNCH.TIME= HELO.LAUNCH.TIME= 65 OPEN SPCT IS 45 *SPOT-Q = 6 I = 3SPGT(I) = 0#OPEN SPOTS= 4 AV8.LAUNCH.TIME= HELD.LAUNCH.TIME= 45 65 OPEN SPOT IS #SPOT-Q = 6 I = 2 #SPOT-Q = 6 I = 1 #UPEN SPUTS= 4 SPOT(I) = 17SUPEN SPUTS= 4 SPUT(I) =-18

TIME: 38.25 EVENT: 4 AC.ID: 22 AC.LDC: 8
AC 22 WITH FUEL 1.00 AND LOAD O. HAS OP-STAT 0.800
AC.OP.STAT(AC): 1.5CC
AT 38.25 THERE ARE 4 FLIGHTS IN THE PLAN

TIME: 39.20 EVENT: 3 AC.ID: 18 AC.DEST: I
AC 18 WITH FUEL 1.00 AND LOAD 1.00 HAS OP.STAT 1.00
AVE 18 RDY TO LAUNCH AT 39 FROM SPOT 1
AV3 FLIGHT SCHED TO LAUNCH AT 45 HAS 2 AV8'S RDY ON SPOTS
AV8 FLIGHT SCHE TO LAUNCH AT 45 HAS BEEN SENT TO FLIGHT.LAUNCH

TIME: 39.28 EVENT: 12 DELTA UPDATE TIME 24-2766 TIME-DELTA= 15.0000 TIME: 39.28 EVENT: 9 #CPEN SPOTS= 4 LAST DELTA UPDATE= 24 #DELTA AC= 0 N.SPDT.Q = SCHED TO LAUNCH AT AC. 9 AT 7 65 AC 10 AT 7 SCHED TO LAUNCH AT 65 AC 15 SCHED TO LAUNCH AT AT 3 66 SCHED TO LAUNCH AT AC 16 AT 8 66 AC 19 AT & SCHED TO LAUNCH AT 75 AC 20 AT 8 SCHED TO LAUNCH AT 75 #SPOT.Q = 6 #OPEN SPOTS= 4 I = 6SPOT(I) = 045 HELD.LAUNCH.TIME= #SPOT.Q = 6 I = 5 AVS.LAUNCH.TIME= 65 OPEN SPOT IS *OPEN SPOTS= 4 SPOT(I) = 065 OPEN SPOT IS AV8.LAUNCH.TIME= HELD.LAUNCH.TIME= 45 4 = I 6 = G.TD92# '4 =2TE92 NA9D# SPGT(I) = 0HELD.LAUNCH.TIME= 65 OPEN SPOT IS AV8.LAUNCH.TIME= 45 #CPEN SPOTS= 4 #SPOT-Q = 6 I = 3SPUT(I) = AVS.LAUNCH.TIME= 45 HELD.LAUNCH.TIME= 65 OPEN SPOT IS #SPOT.Q = 6 I = 2 #SPOT.Q = 6 I = I #OPEN SPOTS= 4 #OPEN SPOTS= 4 SPUT(I) = 17SPGT(I) = I8TIME: 39.51 EVENT: 10 FLT.TIME 45 FLT.TYPE 3 0.9 LAST. LAUNCH. TIME= 37.7 LAST.REC.TIME= 27.2 INTERVAL= TIME: 40 AC 17 WILL LAUNCH IN 0.88 MINUTES TIME: 40 AC 18 WILL LAUNCH IN 1.42 MINUTES 65 IS IN PLAN AND HAS AC 9 AT LOCATION 7 WITH DEST FLIGHT FLIGHT 65 IS IN PLAN AND HAS AC 10 AT LOCATION 7 WITH DEST WITH DEST FLIGHT 66 IS IN PLAN AND HAS AC 15 AT LOCATION 9 66 IS IN PLAN AND HAS AC 16 AT LOCATION FLIGHT 8 WITH DEST ū 75 IS IN PLAN AND HAS AC 19 AT LOCATION FLIGHT WITH DEST 8 FLIGHT 75 IS IN PLAN AND HAS AC 20 AT LOCATION 8 WITH DEST TIME: 40.39 EVENT: 1 AC.ID: 17 AC.LGC: 2 AC 17 WITH FUEL 1.00 AND LOAD 1.00 HAS OP.STAT 1.00 *GPEN SPOTS = AC 17 LAUNCHES FROM 2 WITH DELAY -4.61 AC 17 WILL ARRIVE TO DELTA AT 73 WITH PRIDRITY 0.90 AND FLYING.TIME 37.1 40.4 FLIGHT AT 45 WITH 3 AC LAUNCHES AC 17 AT TIME: 40.93 EVENT: 1 AC.ID: 18 AC.LCC: 1 AC 13 WITH FUEL 1.00 AND LUAD 1.00 HAS DP.STAT 1.30

AC 13 WILL ARRIVE TO DELTA AT 67 WITH PRIORITY 0.88 AND FLYING.TIME 45.4

AC 13 LAUNCHES FROM 1 WITH DELAY -4.07

#CPEN SPOTS =

```
TIME:
                        41.28 EVENT:
#OPEN SPOTS= 6 LAST DELTA UPDATE=
                                     24 #DELTA AC= 0 N.SPOT.Q = 6
      AT 7 SCHED TO LAUNCH AT
                                   65
AC 10
       AT 7
             SCHED TO LAUNCH AT
                                   65
             SCHED TO LAUNCH AT
AC 15
       AT 8
                                   66
AC 16
             SCHED TO LAUNCH AT
       B TA
                                   66
AC 19
AC 20
             SCHED TO LAUNCH AT
       AT 3
                                   75
      AT 8 SCHED TO LAUNCH AT
                                   75
  *OPEN SPOTS= 6 #SPOT.Q = 6
                                   I = 6
                                            SPOT(I) = 0
                                            65 OPEN SPOT IS 6
                  75
AV8.LAUNCH.TIME=
                        HELD.LAUNCH.TIME=
    AC 15 COMPATIBLE TO GO TO SPOT 6 HAS LAUNCH.TIME=
                                                        66 AND FLYING TIME= 150
                        AC 15 WILL RESPOT TO SPCT 6
                           NUM.OPEN.SPOTS = 5
#IN SPOT.Q 5 #OPEN SPOTS 5 I 6 SPOT(I)-15 AC.ID 15 AC.LDC 8 #OPEN SPOTS= 5 #SPOT.Q = 5 I = 5 SPOT(I) = 0
AV8.LAUNCH.TIME= 75 HELD.LAUNCH.TIME=
                                              65 OPEN SPOT IS 5
    AC 16 COMPATIBLE TO GO TO SPOT 5 MAS LAUNCH.TIME = 66 AND FLYING.TIME = 150
                        AC 16 WILL RESPOT TO SPOT 5
                          NUM-OPEN-SPOTS = 4
*IN SPOT-Q 4 #QPEN SPOTS 4 I 5 SPOT(I)-16
                                                AC. ID 16 AC.LOC 8
  #OPEN SPOTS= 4
                   \#SPGT_Q = 4 I = 4 SPGT(I) = 0
                   75 HELD.LAUNCH.TIME=
AVB.LAUNCH.TIME=
                                              65 OPEN SPOT IS 4
    AC 9 COMPATIBLE TO GO TO SPOT 4 HAS LAUNCH.TIME= 65 AND FLYING.TIME= 120
                        AC 9 WILL RESPOT TO SPOT 4
                           NUM. OPEN. SPOTS =
  N SPOT.Q 3 #OPEN SPOTS 3 I 4 SPOT(I) -9 AC.ID 9
#OPEN SPOTS= 3 #SPOT.Q = 3 I = 3 SPOT(I) = 0
#IN SPOT.Q
                                                AC. ID 9 AC.LOC
                  75
                        HELD.LAUNCH.TIME=
                                             65 OPEN SPOT IS 3
AV8.LAUNCH.TIME=
    AC 10 COMPATIBLE TO GO TO SPOT 3 HAS LAUNCH.TIME=
                                                        65 AND FLYING.TIME# 120
                        AC 10 WILL RESPOT TO SPOT 3
                           NUM. JPEN. SPOTS =
#IN SPOT.Q 2 #OPEN SPOTS 2 I 3 SPOT(I)-10
#OPEN SPOTS= 2 #SPOT.Q = 2 I = 2 SPOT.
                                                 AC.ID IO AC.LOC 7 .
                                             SPOT(I) = 0
AV8.LAUNCH.TIME=
                   75
                        HELO.LAUNCH.TIME=
                                              65 OPEN SPOT IS
  #OPEN SPOTS= 2
                   #SPOT_Q = 2 I = 1
                                             SPUT(I) = 0
AVS.LAUNCH.TIME=
                        HELD.LAUNCH.TIME=
                   75
                                              65 OPEN SPOT IS
               TIME:
                        43.22 EVENT: 3 AC.ID: 15 AC.DEST:
AC 15 WITH FUEL 1.00
                        AND LOAD O.
                                       HAS OP.STAT 0.90
                TIME:
                        44.28 EVENT: 12
DELTA.UPDATE.TIME=
                      24.2766
                                 TIME-DELTA=
                TIME:
                       44.28 EVENT:
```

#OPEN SPOTS= 2 LAST DELTA UPDATE= 24 #DELTA AC= 0 N.SPOT.Q = 2

Massassa Samasa Isanggal parangga

```
AC 19 AT 3 SCHED TO LAUNCH AT AC 20 AT 9 SCHED TO LAUNCH AT
  *OPEN SPOTS= 2
                                             SPUT(I) = 15
                    #SPOT.Q = 2
  #OPEN SPOTS=
                    #SPOT.Q =
                                    I = 5
                                             SPGT(I) = -16
                    #SPOT.Q = 2
#SPOT.Q = 2
#SPOT.Q = 2
                                             SPOT(I) = -9
  #OPEN SPOTS= 2
                                    I = 4
  *OPEN SPOTS= 2
*OPEN SPOTS= 2
                                    I = 3
                                             SPOT(I) =-10
                                    I = 2
                                             SPOT(I) = 0
                         HELD. LAUNCH.TIME=
                                              65 OPEN SPOT IS 2
AV8.LAUNCH.TIME=
                   75
                    #SPOT.Q = 2 I = 1
  #OPEN SPOTS= 2
                                             SPOT(I) =
                                                       а
                                             65 OPEN SPOT IS 1
AV8.LAUNCH.TIME=
                   75 HELO.LAUNCH.TIME=
                        44.38 EVENT: 3 AC.ID: 10 AC.DEST: 3
               TIME:
AC 10 WITH FUEL 1.00
                        AND LOAD G.
                                       HAS DP.STAT 2.30
               TIME:
                        44.66 EVENT: 3 AC.ID: 16 AC.DEST:
AC 15 WITH FUEL 1.00
                        AND LOAD O.
                                       GB.D TATZ 9.80
                        45.48 EVENT: 3 AC.ID: 9 AC.DEST:
               TIME:
AC 9 WITH FUEL 1.30
                        AND LOAD O.
                                       HAS OP.STAT 0.80
                TIME:
                        46.80 EVENT: 18 FLT.TIME 45 FLT.TYPE 3
THIS FLIGHT HAS LAUNCHED
                TIME:
                        49.28 EVENT: 12
DELTA. UPDATE. TIME=
                      24-2766
                                TIME-DELTA=
                                                25.0000
                        49.28 EVENT: 9
                TIME:
#UPEN SPOTS= 2 LAST DELTA UPDATE= 24 #DELTA AC= 0 N.SPOT.Q = 2
AC 19 AT 8 SCHED TO LAUNCH AT AC 20 AT 8 SCHED TO LAUNCH AT
                                   7'5
                                   75
                                             SPOT(I) = 15
  #OPEN SPOTS=
                     #SPOT.Q = 2
                                    I = 6
  #OPEN SPOTS= 2
                                    I = 5
                                             SPOT(I) = 16
                     #SPOT.Q =
                    #SPOT.Q = 2
  =CTER2 MERDs
                                   I = 4
                                             SPOT(I) =
  *OPEN SPOTS= 2
                    #SPOT.2 = 2
                                   I = 3
                                             SPUT(I) = 10
  #OPEN SPOTS= 2
                    #SPOT.2 = 2
                                    I = 2
                                             SPOT(I) = 0
                                             65 OPEN SPOT IS 2
AV8.LAUNCH.TIME=
                         HELO.LAUNCH.TIME=
                    75
  #OPEN SPOTS= 2
                    \#SPUT_{\bullet}Q = 2 I = 1
                                             = (I) TD92
AV8.LAUNCH.TIME=
                    75
                         HELO.LAUNCH.TIME=
                                              65 OPEN SPCT IS 1
                        54.28 EVENT: 12
                TIME:
DELTA.UPOATE.TIME=
                      24.2766 TIME-DELTA= 30.0000
```

```
54.29 EVENT: 9
              TIME:
                                  24 SOELTA AC= 0 N.SPOT.Q =
#STED SPOTS = 2 LAST DELTA UPDATE =
                                 75
     AT 8 SCHED TO LAUNCH AT
AC 20 AT 8 SCHED TO LAUNCH AT
                                 75
                                          SPGT(I) = 15
  *OPEN SPOTS=
                   #SPOT.Q = 2
                                  I = 6
               2
                   #SPUT-Q =
                                  I = 5
                                          SPOT(I) = 16
  #OPEN SPOTS=
                                  I = 4
                                          SPUT(I) = 9
  =ZTE 92 MAGD&
               2
                   *SPOT.Q =
                              2
                                          SPOT(I) = 10
                                  I = 3
  *OPEN SPOTS*
                   #SPOT.Q =
                              2
                             2
                   #SPOT.Q =
                                  I = 2
                                          SPOT(I) =
  #OPEN SPOTS=
                       HELO.LAUNCH.TIME=
                                          65 OPEN SPOT IS 2
AV8.LAUNCH.TIME=
                  75
    AC 19 COMPATIBLE TO GO TO SPOT 2 HAS LAUNCH.TIME TO AND FLYING.TIME 75
#IN SPOT.Q 2 #OPEN SPOTS 2 I 2 SPOT(I) 0 AC.ID 19 AC.LOC 8
  #OPEN SPOTS= 2 #SPOT.Q = 2
                                          SPOT(I) = 0
                                 I = 1
                      HELD.LAUNCH.TIME=
                                         65 OPEN SPOT IS 1
AV8.LAUNCH.TIME=
                 75
    AC 19 COMPATIBLE TO GO TO SPOT 1 HAS LAUNCH.TIME TO AND FLYING.TIME 75
FIN SPOT-Q 2 FOREN SPOTS 2 I 1 SPOT(I) 0 AC-ID 19 AC-LOC 8
                      55.00 EVENT: 8 FLT.TIME
                                                 95 FLT.TYPE
               TIME:
THERE ARE 4 AC OF TYPE 1 IN THIS PLIGHT
               SCHED TO LAUNCH AT
                                         AND RETURN AT
                                                         69
       AT 10
AC
                          COUNTER :
                                    95
                                         AND RETURN AT
                                                         67
        AT 10
               SCHED TO LAUNCH AT
               AC : 2
                         COUNTER :
                                      2
               SCHED TO LAUNCH AT
                                    95
                                         AND RETURN AT
                                                         73
        AT 10
                AC :
                      3
                          COUNTER :
                                      3
                                         AND RETURN AT
                                    95
               SCHED TO LAUNCH AT
        AT 10
                         COUNTER :
               AC :
                     4
T. NUM. AC =
               FLT_AC_NUM = 4 COUNTER =
                      56.00 EVENT: 8 FLT.TIME
                                                 96 FLT.TYPE
               TIME:
THERE ARE 2 AC OF TYPE 2 IN THIS FLIGHT
                                         AND RETURN AT
                                                         70
        AT 10
               SCHED TO LAUNCH AT 96
               AC : 11
                          COUNTER :
                                    1
        AT 10
                                         AND RETURN AT
                SCHED TO LAUNCH AT
                                    96
AC 12
                         COUNTER :
                AC : 12
               FLT.AC. NUM = 2 COUNTER = 2
T.NUM.AC = 0
                       56.97 EVENT: 4 AC.ID: 9 AC.LOC:
               TIME:
AC 9 WITH FUEL 1.30
                                    HAS UP.STAT 0.800
                      AND LOAD O.
  AC. 0P.STAT(AC) : 1.000
       56.97 THERE ARE 5 FLIGHTS IN THE PLAN
       AC.ID(AC): 9
                       AC.ID(ACE):
```

#RDY AC IN FLIGHT = 1

TIME: 57.37 EVENT: 4 AC.ID: 10 AC.LDC: 3
AC 10 WITH FUEL 1.00 AND LDAD 0. HAS OP.STAT 0.600
AC.DP.STAT(AC): 1.000
AT 57.37 THERE ARE 5 FLIGHTS IN THE PLAN
AC.ID(AC): 10 AC.ID(ACE): 10
#RDY AC IN FLIGHT = 2
FLIGHT.LAUNCH HAS BEEN SCHEDULED

57.87 EVENT: 10 FLT.TIME TIME: 65 FLT.TYPE 1 40.9 LAST-REC.TIME= INTERVAL= 0.6 LAST.LAUNCH.TIME= 27.2 58 AC 10 WILL LAUNCH IN 0.64 MINUTES TIME: 58 AC 9 WILL LAUNCH IN 1.14 MINUTES TIME: FLIGHT 66 IS IN PLAN AND HAS AC 15 AT LOCATION WITH DEST 10 6 66 IS IN PLAN AND HAS FLIGHT AC 16 AT LOCATION 5 WITH DEST 10 FLIGHT 75 IS IN PLAN AND HAS AC 19 AT LOCATION 9 WITH DEST AC 20 AT LOCATION 75 IS IN PLAN AND HAS WITH DEST FLIGHT 3 95 IS IN PLAN AND HAS AC 1 AT LOCATION 10 FLIGHT WITH DEST FLIGHT 95 IS IN PLAN AND HAS AC Z AT LOCATION 10 WITH DEST FLIGHT 95 IS IN PLAN AND HAS AC 3 AT LOCATION 10 WITH DEST 95 IS IN PLAN AND HAS 4 AT LOCATION 10 WITH DEST FLIGHT AC 96 IS IN PLAN AND HAS FLIGHT AC 11 AT LOCATION 10 WITH DEST FLIGHT 96 IS IN PLAN AND HAS AC 12 AT LOCATION 10 WITH DEST TIME: 58.51 EVENT: 1 AC.ID: 10 AC.LDC: 3

AC 10 WITH FUEL 1.00 AND LOAD 1.00 HAS OP.STAT 1.00
#OPEN SPOTS = 3
AC 10 LAUNCHES FROM 3 WITH DELAY -6.49
AC 10 WILL ARRIVE TO DELTA AT117 WITH PRIDRITY 0.91 AND FLYING.TIME 52.4
FLIGHT AT 65 WITH 3 AC LAUNCHES AC 10 AT 58.5

TIME: 59.01 EVENT: 1 AC.ID: 9 AC.LDC: 4

AC 9 WITH FUEL 1.00 AND LOAD 1.30 MAS OP.STAT 1.63

#OPEN SPOTS = 4

AC 9 LAUNCHES FROM 4 WITH DELAY -5.99

AC 9 WILL ARRIVE TO DELTA AT119 WITH PRIORITY 0.92 AND FLYING.TIME 51.0

FLIGHT AT 65 WITH 3 AC LAUNCHES AC 9 AT 59.0

TIME: 59.28 EVENT: 12
DELTA.UPDATE.TIME= 24.2766 TIME-DELTA= 35.0000

TIME: 59.28 EVENT: 9

#JPEN SPITS= 4 LAST DELTA UPDATE= 24 #DELTA AC= G N.SPUT.Q = 2

AC 19 AT 8 SCHED TO LAUNCH AT 75

AC 20 AT 8 SCHED TO LAUNCH AT 75

#JPEN SPITS= 4 #SPUT.Q = 2 I = 5 SPUT(I) = 15

```
=2TERS NERD&
                   #SPOT.Q =
                                  I = 5
                                          SPOT(I) = 16
                   #SPQT.Q = 2
                                          SPOT(I) =
  #OPEN SPOTS#
                                  I = 4
AV S.LAUNCH.TIME =
                  75 HELD-LAUNCH-TIME=
                                           66 OPEN SPOT IS
  SOPEN SPOTS= 4
                   #SPOT.Q = 2 I = 3
                                          SPOT(I) =
                                                    0
AVS.LAUNCH.TIME=
                  75 HELD-LAUNCH-TIME=
                                           66 OPEN SPOT IS
  #UPEN SPUTS= 4
                   *SPQT.Q = 2 I = 2
                                          SPOT(I) =
                                                    O
- PHIT. HOMUALLEVA
                  75 HELD.LAUNCH.TIME=
                                          66 OPEN SPOT IS 2
    AC 19 COMPATIBLE TO GO TO SPOT 2 HAS LAUNCH.TIME=
                                                     75 AND FLYING-TIME=
#IN SPOT-Q 2 #OPEN SPOTS 4 I 2 SPOT(I) 0 AC-IO 19
                                                       AC.LOC 8
  #OPEN SPOTS= 4
                  #SPOT.Q = 2 I = 1
                                          SPUT(I) = 0
                  75 HELO.LAUNCH.TIME=
                                          66 OPEN SPOT IS 1
AV 8. LAUNCH. TIME=
    AC 19 COMPATIBLE TO GO TO SPOT 1 HAS LAUNCH.TIME= 75 AND FLYING.TIME=
#IN SPOT-Q 2 #OPEN SPOTS 4 I 1 SPOT(I) 0 AC-ID 19 AC-LOC 8
                      59.57 EVENT: 9
              TIME:
#OPEN SPOTS= 4 LAST DELTA UPDATE= 24 #DELTA AC= 0 N.SPOT.Q = 2
     TA HORUAL ET CHOZ 8 TA
AC 19
                                 75
                                 75
AC 20
  #OPEN SPOTS= 4
                   #SPOT.Q = 2
                                          SPUT(I) = 15
                                  I = 6
                   #SPOT.Q = 2
                                          SPOT(I) = 16
  #OPEN SPOTS=
                                  I = 5
  #OPEN SPOTS= 4
                   #SPOT.Q = 2
                                  I = 4
                                          SPQT(I) = 0
AVB.LAUNCH.TIME=
                       HELD.LAUNCH.TIME=
                  75
                                          66 OPEN SPOT IS
  #OPEN SPOTS= 4
                   \#SPUT_*Q = 2
                                  I = 3
                                          SPUT(I) =
                  75 HELD.LAUNCH.TIME=
AV8.LAUNCH.TIME=
                                           66 OPEN SPOT IS
  #OPEN SPOTS= - 4
                   #SPUT.Q = 2 I = 2
                                          SPOT(I) = 0
                                           66 GPEN SPOT IS 2
AV 8. LAUNCH. TIME=
                  75 HELD-LAUNCH-TIME=
    AC 19 COMPATIBLE TO GO TO SPOT 2 HAS LAUNCH.TIME TO AND FLYING.TIME
#IN SPOT.Q 2 #OPEN SPOTS 4 I 2 SPOT(I) 0 AC.ID 19 #OPEN SPOTS= 4 #SPOT.Q = 2 I = 1 SPOT(I) = 0
                                                       ACLLOC B
                     HELD.LAUNCH.TIME=
AY8.LAUNCH.TIME=
                 75
                                          66 OPEN SPOT IS 1
   AC 19 COMPATIBLE TO GO TO SPOT 1 HAS LAUNCH.TIME= 75 AND FLYING.TIME=
#IN SPOT.Q Z #OPEN SPOTS 4 I 1 SPOT(I) O AC.ID 19 AC.LOC 8
              TIME:
                      62.65 EVENT: 4 AC.ID: 15 AC.LOC: 6
AC 15 WITH FUEL 1.00
                      AND LUAD O.
                                   OOE.O TATZ.40 ZAH
  AC-QP-STAT(AC) : 1.000
      62.65 THERE ARE 4 FLIGHTS IN THE PLAN
       AC.ID(AC): 15
                      AC.ID(ACE): 15
      #RDY AC IN FLIGHT = 1
               TIME:
                      64.28 EVENT: 12
DELTA. UPDATE.TIME=
                    24.2756
                               TIME-DELTA=
                                             40-0000
```

TIME: 64.28 EVENT: 9

#DPEN SPOTS= 4 LAST DELTA UPDATE= 24 #DELTA AC= 0 N.SPOT.Q = 2

AC 19 AT 8 SCHED TO LAUNCH AT 75

AC 20 AT 8 SCHED TO LAUNCH AT 75

#OPEN SPOTS= #SPOT.Q = 2 I = 6SPOT(I) = 15#QPEN SPOTS= 2 #SPOT.Q = I = 5SPOT(I) = 16I = 4 #OPEN SPOTS= aspor.q = 2SPGT(I) = 0HELD-LAUNCH.TIME= 66 OPEN SPOT IS AV8.LAUNCH.TIME= #SPOT.9 = 2 #OPEN SPOTS= 4 I = 3 SPOT(I) = V8.LAUNCH.TIME= 75 HELB-LAUNCH-TIME= 66 GPEN SPOT IS #OPEN SPOTS= 4 #\$POT.Q = 2 I = 2 SPGT(I) = G66 OPEN SPOT IS AV8_LAUNCH_TIME= 75 HELD.LAUNCH.TIME= AC 19 COMPATIBLE TO GO TO SPOT 2 HAS LAUNCH.TIME = 75 AND FLYING.TIME= #IN SPOT.Q 2 #OPEN SPOTS 4 I Z SPOT(I) 0 AC.ID 19 AC.LOC 8 #OPEN SPOTS# 4 #SPOT.Q # 2 I # 1 SPOT(I) # 0 75 HELD-LAUNCH-TIME= 66 OPEN SPOT IS 1 AV8.LAUNCH.TIME= AC 19 COMPATIBLE TO GO TO SPOT 1 HAS LAUNCH.TIME= 75 AND FLYING.TIME= #IN SPOT.O 2 #OPEN SPOTS 4 I 1 SPOT(I) O AC.ID 19 AC.LOC 8 TIME: 64.65 EVENT: 4 AC.ID: 16 AC.LOC: 5 AC 16 WITH FUEL 1.00 AND LOAD G. HAS OP-STAT 0.800 AC-0P-STAT(AC) : 1-000 64.65 THERE ARE 4 PLIGHTS IN THE PLAN

AC.ID(AC): 16 AC.ID(ACE): 16 #RDY AC IN FLIGHT = 2 FLIGHT.LAUNCH HAS BEEN SCHEDULED

65.00 EVENT: 8 FLT.TIME 105 FLT.TYPE TIME: THERE ARE 2 AC OF TYPE 3 IN THIS FLIGHT SCHED TO LAUNCH AT 105 AND RETURN AT AC 21 AC : 21 COUNTER : 1 AC 22 AT SCHED TO LAUNCH AT 105. AND RETURN AT 2 AC : 22 COUNTER : FLT.AC.NUM = 2 COUNTER = 2 T.NUM.AC =

65.00 EVENT: 4 AC.ID: 21 AC.LDC: TIME: AC 21 WITH FUEL 1.00 AND LOAD 1.00 HAS OP.STAT 1.000 THIS AC LOADED PREVIOUSLY AC-OP-STAT(AC) : 1.000 65.00 THERE ARE 5 FLIGHTS IN THE PLAN AC.ID(AC): 21 AC.ID(ACE): 21 #RDY AC IN FLIGHT = 1

TIME: 65.00 EVENT: 4 AC.ID: 22 AC.LDC: AC 22 WITH FUEL 1.00 AND LOAD 1.00 HAS DP.STAT 1.000 THIS AC LOADED PREVIOUSLY AC. 9P.STAT(AC) : 1.000 65.00 THERE ARE 5 FLIGHTS IN THE PLAN AC. ID(AC) : 22 AC.ID(ACE) : GROY AC IN FLIGHT = 2 AC ZI FILED IN SPOT-Q

AC ZZ FILED IN SPOT.Q

```
TIME:
                      65.00 EVENT: 9
                                   24 #DELTA AC= 0 N.SPOT.Q =
#OPEN SPOTS= 4 LAST DELTA UPDATE=
      AT 8 SCHED TO LAUNCH AT
                                 75
AC 19
AC 20
      8 TA
            SCHED TO LAUNCH AT
                                 75
AC 21
      AT 8 SCHED TO LAUNCH AT 105
AC 22 AT 8 SCHED TO LAUNCH AT 105
                   #SPOT-Q = 4 I = 6
  #OPEN SPOTS= 4
                                          SPOT(I) = 15
                  #SPOT.Q = 4 I = 5
#SPOT.Q = 4 I = 4
  #OPEN SPOTS= 4
                                          SPOT(I) = 16
                                          SPOT(I) = 0
  #OPEN SPOTS= 4
                  75
                      HELD.LAUNCH.TIME=
AV8.LAUNCH.TIME=
                                          66 OPEN SPOT IS
                   #SPOT.Q = 4 I = 3
  #OPEN SPOTS= 4
                                          SPOT(I) = 0
                  75 HELD.LAUNCH.TIME=
AV8.LAUNCH.TIME=
                                           66 OPEN SPOT IS
                  #SPOT.Q = 4 I = 2
 #OPEN SPOTS= 4
                                          SPOT(I) = 0
AV8.LAUNCH.TIME=
                 75 HELO-LAUNCH-TIME= 66 OPEN SPOT IS 2
    AC 19 COMPATIBLE TO GO TO SPOT 2 HAS LAUNCH.TIME= 75 AND FLYING.TIME=
        AC = 19 WILL RESPOT TO 2
                               NUM-OPEN-SPOTS = 3
#IN SPOT-Q 3 #OPEN SPOTS 3 I 2 SPOT(I)-19 AC.ID 19 AC.LDC
                  *SPOT.Q = 3 I = 1 SPOT(I) = 0
75 HELD.LAUNCH.TIME= 66 OPEN SPOT IS 1
  *OPEN SPOTS= 3 *SPOT.Q = 3
AV8.LAUNCH.TIME=
    AC 20 COMPATIBLE TO GO TO SPOT 1 HAS LAUNCH.TIME=
                                                     75 AND FLYING.TIME=
        AC = 20 WILL RESPOT TO 1
                               NUM-OPEN-SPOTS = 2
#IN SPOT-Q 2 #OPEN SPOTS 2 I 1 SPOT(I)-20 AG.ID 20 AC.LDC
                                                 66 FLT.TYPE 2
               TIME:
                      65.15 EVENT: 10 FLT.TIME
INTERVAL=
          0.8
                LAST.LAUNCH.TIME=
                                   59.0 · LAST.REC.TIME=
                  65 AC 16 WILL LAUNCH IN 0.75 MINUTES
          TIME:
                  65 AC 15 WILL LAUNCH IN 1.35 MINUTES
          TIME:
FLIGHT
        75 IS IN PLAN AND HAS AC 19 AT LOCATION 8 WITH DEST
```

```
FLIGHT
        75 IS IN PLAN AND HAS
                               AC 20 AT LOCATION 8
                                                     WITH DEST
FLIGHT
         95 IS IN PLAN AND HAS
                               AC
                                   1 AT LOCATION 10
                                   2 AT LOCATION 10
FLIGHT
         95 IS IN PLAN AND HAS
                               AC
                                                      WITH DEST
FLIGHT
         95 IS IN PLAN AND HAS
                                AC
                                   3 AT LOCATION 10
                                                      WITH DEST
FLIGHT
         95 IS IN PLAN AND HAS
                                AC
                                   4 AT LUCATION 10
                                                      WITH DEST
FLIGHT
         96 IS
               IN PLAN AND HAS
                                AC 11 AT LOCATION 10
                                                      WITH DEST
         96 IS IN PLAN AND HAS
FLIGHT
                                                      WITH DEST
                               AC 12 AT LOCATION 10
        105 IS IN PLAN AND HAS
FLIGHT
                               AC 21 AT LOCATION 8
                                                      WITH DEST
      105 IS IN PLAN AND HAS
                               AC 22 AT LOCATION
                                                      WITH DEST
```

TIME: 65.90 EVENT: 1 AC.ID: 16 AC.LDC: 5

AC 16 WITH FUEL 1.00 AND LOAD 1.00 HAS OP.STAT 1.00

#OPEN SPOTS = 3

AC 16 LAUNCHES FROM 5 WITH DELAY -0.10

AC 16 WILL ARRIVE TO DELTA AT121 WITH PRIORITY 0.88 AND FLYING.TIME 86.3

FLIGHT AT 66 WITH 3 AC LAUNCHES AC 16 AT 65.9

CNA PROFESSIONAL PAPER INDEXI

PP 4072

Laird, Robbin F. The French Strategic Dilemma, 22 pp., Nov 1984

PP 415

Mizrahi, Maurice M. Can Authoritative Studies Be Trusted? 2 pp., Jun 1984

PP 416

Jondrow, James M., and Levy, Robert A. The Displacement of Local Spending for Pollution Control by Federal Construction Grants, 6 pp., Jun 1984 (Reprinted from American Economic Review, May 1984)

PP 418

Reslock, Patricia A. The Care and Feeding of Magnetic Tapes, 7 pp., Jul 1984

PP 420

Weiss, Kenneth G. The War for the Falklands: A Chronology, 32 pp., Aug 1982

PP 422

Quester, Aline, and Marcus, Alan. An Evaluation of The Effectiveness of Classroom and On the Job Training, 35 pp., Dec 1984. (Presented at the Symposium on Training Effectiveness, NATO Defense Research Group, Brussels, 7.9 January 1985)

PP 423

Dismukes, N. Bradford, and Weiss, Kenneth G. MARE MOSSO: The Mediterranean Theater, 26 pp., Nov 1984. (Presented at the Seapower Conference, Washington, D.C., 26-27 November 1984)

PP 424

Berg, Dr. Robert M., The CNA Ordnance Programming Model and Methodology, 27 pp., Oct 1984. (Presented at the ORSA-MAS/MDRS Symposium, Washington, Aug 1984)

PP 425

Horowitz, Stanely A., and Angier, Bruce N. Costs and Benefits of Training and Experience, 18 pp., Jan 1985. (Presented at the Symposium on Training Effectiveness, NATO Defense Research Group, Brussels, 7-9 January 1985)

PP 127

Cavalluzzo, Linda C. OpTempo and Training Effect, eness. 19 pp., Dec 1984. (Presented at the Symposium on Training Effectiveness, NATO Defense Research Group Brusse's 7.9 January 1985.

PP 428

Matthes, Greg. Cdr., USN and Evanovich, Peter Ency Levels. Readiness, and Capability, 24 pp., Nov. 1984. (Presented at the ORSA-TIMS 26-28 November Meeting, Washington, D.C.)

PP 429

Perla, Peter P. and Barrett, Raymond T. LCdr., USN, Wargaming and Its Uses, 13 pp., Nov 1984, (Published in the Naval War College Review, XXXVIII, No. 5 / Sequence 311, September-October 1985)

PP 430

Goldberg, Matthew S. The Relationship Between Material Failures And Flight Hours: Statistical Considerations, 18 pp., Jan 1985

PP 431

McConnell, James M. A Possible Change in Soviet Views on the Prospects for Anti-Submarine Warfare, 19 pp., Jan 1985

PP 432

Marcus, Alan J. and Curran, Lawrence E., Cdr., USN. The Use of Flight Simulators in Measuring and Improving Training Effectiveness, 29 pp., Jan 1985 (Presented at the Symposium on Training Effectiveness, NATO Defense Research Group, Brussels, 7-9 January 1985)

PP 433

Quester, Aline O. and Lockman, Robert F. The All Volunteer Force: Outlook for the Eighties and Nineties, 20 pp., Mar 1984 (To be published in Armed Forces and Society, 1985)

PP 435

Levine, Daniel B. and Jondrow, James M. Readiness or Resources: Which Comes First? 12 pp., Mar 1985

PP 436

Goldberg, Matthew S. Logit Specification Tests Using Grouped Data, 26 pp., Jan 1985

^{1.} CNA Professional Papers with an AD number may be obtained from the National Tochnical Information Service, U.S. Department of Commerce, Springfield, Virginia 22151. Other papers are available from the Management Information Office, Center Sir Navai Analyses, 4401 Ford Avenue. Alexandria, Virginia 22302-0268. An index of selected public (tions is also available on request. The index includes a listing of professional papers, with abstracts, issued from 1969 to December 1980).

^{2.} Listings for Professional Papers issued prior to PP 407 can be found in Index of Selected Publications (through December 1983). March 1984.

CNA PROFESSIONAL PAPER INDEX (Continued)

PP 438

Fletcher, Jean W. Supply Problems in the Naval Reserve, 14 pp., Feb 1986. (Presented at the Third Annual Mobilization Conference, Industrial College of the Armed Forces, National Defense University).

PP 440

Bell, Jr., Thomas D. The Center for Naval Analyses Past, Present, and Future, 12 pp., Aug 1985

PP 441

Schneiter, George R. Implications of the Strategic Defense Initiative for the ABM Treats, 13 pp., Feb 1986. Published in Survival, September October 1985.

PP 442

Berg, Robert, Dennis, Richard, and Jondrow, James. Price Analysis and the Effects of Competition, 23 pp., Sep 1985, Presented at the Association for Public Policy Analysis and Management - The Annual Research Conference, Shoreham Hotel, Washington, D.C., 25 October 1985)

PP 143

FitzGerald, Mary C., Marshal Ogarkov on Modern War: 1977-1985, 65 pp., Mar 1986

PP 445

Kober, Stanley, Strategic Defense, Deterrence, and Arms Control. 23 pp., Aug 1986. (Published in The Washington Quarterly, Winter 1986)

PP 446

Mayberry, Paul W. and Maier, Milton H., Towards Justifying Enlistment Standards: Linking Input Characteristics to Job Performance, 11 pp., Oct 1986. (Paper to be presented at 1986 American Psychological Association symposium entitled "Setting Standards in Performance Measurement")

PP 148

Cymrist, Donald J., Military Retriement and Social Society - A Comparative Analysis, 28 pp. Oct 1986

PP 449

Richardson, Henry R., Search Theiry, Lupp. Apr. 1986.

PP 451

FitzGerald, Mary C., The Sowiet Leadership on Nuclear War 40 pp., Apr 1987

PP 152

Mayberry, Paul W., Issues in the Development of a Competence Scale. Implications for Linking Job Performance and Aptitude 22 pp., Apr 1987.

PP 453

Dismukes, Bradford, Strategic ASW And The Conventional Defense Of Europe, 26 pp., Apr. 1987

PP 454

Maier, Milton, Marine Corps Project To Validate The ASVAB Against Job Performance, 14 pp., May 1987

PP 456

Gates, Stephen, Simulation and Analysis of Flight Deck Operations on an LHA, 81 pp. Jun 1987